--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-0.5B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: qwen2.5_0.5b_1M_stack_16kcw_2ep results: [] --- # qwen2.5_0.5b_1M_stack_16kcw_2ep This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct) on the anghabench_1M_1, the anghabench_1M_2 and the stack datasets. It achieves the following results on the evaluation set: - Loss: 0.0020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:------:|:---------------:| | 0.0064 | 0.3912 | 61000 | 0.0041 | | 0.0029 | 0.7825 | 122000 | 0.0032 | | 0.0023 | 1.1737 | 183000 | 0.0024 | | 0.0018 | 1.5649 | 244000 | 0.0021 | | 0.0011 | 1.9562 | 305000 | 0.0020 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3