--- base_model: bert-base-uncased library_name: transformers license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: Finetuning_BERT_BBCNews results: [] --- # Finetuning_BERT_BBCNews This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1125 - Accuracy: 0.9775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 195 | 0.0810 | 0.9775 | | No log | 2.0 | 390 | 0.1163 | 0.9730 | | 0.1923 | 3.0 | 585 | 0.1213 | 0.9820 | | 0.1923 | 4.0 | 780 | 0.0941 | 0.9775 | | 0.1923 | 5.0 | 975 | 0.1148 | 0.9820 | | 0.0098 | 6.0 | 1170 | 0.1389 | 0.9820 | | 0.0098 | 7.0 | 1365 | 0.1032 | 0.9730 | | 0.0044 | 8.0 | 1560 | 0.1165 | 0.9820 | | 0.0044 | 9.0 | 1755 | 0.1126 | 0.9820 | | 0.0044 | 10.0 | 1950 | 0.1125 | 0.9775 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0