--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - ls-generated4 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-invoice-model results: - task: name: Token Classification type: token-classification dataset: name: ls-generated4 type: ls-generated4 config: invoice split: test args: invoice metrics: - name: Precision type: precision value: 0.9185733512786003 - name: Recall type: recall value: 0.9375 - name: F1 type: f1 value: 0.9279401767505099 - name: Accuracy type: accuracy value: 0.9536870503597122 --- # layoutlmv3-invoice-model This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the ls-generated4 dataset. It achieves the following results on the evaluation set: - Loss: 0.3694 - Precision: 0.9186 - Recall: 0.9375 - F1: 0.9279 - Accuracy: 0.9537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.85 | 100 | 0.7836 | 0.5238 | 0.5982 | 0.5585 | 0.7680 | | No log | 1.69 | 200 | 0.4954 | 0.6888 | 0.7479 | 0.7172 | 0.8422 | | No log | 2.54 | 300 | 0.3483 | 0.7807 | 0.8462 | 0.8121 | 0.9040 | | No log | 3.39 | 400 | 0.3200 | 0.8113 | 0.8654 | 0.8375 | 0.9125 | | 0.5923 | 4.24 | 500 | 0.2775 | 0.8593 | 0.8853 | 0.8721 | 0.9319 | | 0.5923 | 5.08 | 600 | 0.2674 | 0.8700 | 0.9052 | 0.8872 | 0.9377 | | 0.5923 | 5.93 | 700 | 0.2766 | 0.8739 | 0.9135 | 0.8932 | 0.9386 | | 0.5923 | 6.78 | 800 | 0.2641 | 0.8879 | 0.9190 | 0.9031 | 0.9472 | | 0.5923 | 7.63 | 900 | 0.2893 | 0.9094 | 0.9238 | 0.9165 | 0.9447 | | 0.0802 | 8.47 | 1000 | 0.3369 | 0.9145 | 0.9258 | 0.9201 | 0.9465 | | 0.0802 | 9.32 | 1100 | 0.3037 | 0.9043 | 0.9341 | 0.9189 | 0.9505 | | 0.0802 | 10.17 | 1200 | 0.3510 | 0.9032 | 0.9231 | 0.9130 | 0.9472 | | 0.0802 | 11.02 | 1300 | 0.3224 | 0.9138 | 0.9251 | 0.9195 | 0.9501 | | 0.0802 | 11.86 | 1400 | 0.3873 | 0.9133 | 0.9265 | 0.9199 | 0.9456 | | 0.0198 | 12.71 | 1500 | 0.3786 | 0.9120 | 0.9327 | 0.9222 | 0.9492 | | 0.0198 | 13.56 | 1600 | 0.3807 | 0.9050 | 0.9293 | 0.9170 | 0.9469 | | 0.0198 | 14.41 | 1700 | 0.3664 | 0.9088 | 0.9313 | 0.9199 | 0.9510 | | 0.0198 | 15.25 | 1800 | 0.3582 | 0.9152 | 0.9341 | 0.9245 | 0.9521 | | 0.0198 | 16.1 | 1900 | 0.3736 | 0.9198 | 0.9368 | 0.9282 | 0.9528 | | 0.007 | 16.95 | 2000 | 0.3694 | 0.9186 | 0.9375 | 0.9279 | 0.9537 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1