--- license: mit language: - fr pipeline_tag: image-to-text tags: - trocr - vision-encoder-decoder metrics: - cer - wer widget: - src: >- https://raw.githubusercontent.com/agombert/trocr-base-printed-fr/main/sample_imgs/0.jpg example_title: Example 1 - src: >- https://raw.githubusercontent.com/agombert/trocr-base-printed-fr/main/sample_imgs/1.jpg example_title: Example 2 - src: >- https://raw.githubusercontent.com/agombert/trocr-base-printed-fr/main/sample_imgs/2.jpg example_title: Example 3 --- # TrOCR for French ## Overview TrOCR has not yet released for French, so we trained a French model for PoC purpose. Based on this model, it is recommended to collect more data to additionally train the 1st stage or perform fine-tuning as the 2nd stage. It's a special case of the [English trOCR model](https://huggingface.co/microsoft/trocr-base-printed) introduced in the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Li et al. and first released in [this repository](https://github.com/microsoft/unilm/tree/master/trocr) This was possible thanks to [daekun-ml](https://huggingface.co/daekeun-ml/ko-trocr-base-nsmc-news-chatbot) and [Niels Rogge](https://github.com/NielsRogge/) than enabled us to publish this model with their tutorials and code. ## Collecting data ### Text data We created training data of ~723k examples by taking random samples of the following datasets: - [MultiLegalPile](https://huggingface.co/datasets/joelito/Multi_Legal_Pile) - 90k - [French book Reviews](https://huggingface.co/datasets/Abirate/french_book_reviews) - 20k - [WikiNeural](https://huggingface.co/datasets/Babelscape/wikineural) - 83k - [Multilingual cc news](https://huggingface.co/datasets/intfloat/multilingual_cc_news) - 119k - [Reviews Amazon Multi](https://huggingface.co/datasets/amazon_reviews_multi) - 153k - [Opus Book](https://huggingface.co/datasets/opus_books) - 70k - [BerlinText](https://huggingface.co/datasets/biglam/berlin_state_library_ocr) - 38k We collected parts of each of the datasets and then cut randomly the sentences to collect the final training set. ### Image Data Image data was generated with TextRecognitionDataGenerator (https://github.com/Belval/TextRecognitionDataGenerator) introduced in the TrOCR paper. Below is a code snippet for generating images. ```shell python3 ./trdg/run.py -i ocr_dataset_poc.txt -w 5 -t {num_cores} -f 64 -l ko -c {num_samples} -na 2 --output_dir {dataset_dir} ``` ## Training ### Base model The encoder model used `facebook/deit-base-distilled-patch16-384` and the decoder model used `camembert-base`. It is easier than training by starting weights from `microsoft/trocr-base-stage1`. ### Parameters We used heuristic parameters without separate hyperparameter tuning. - learning_rate = 4e-5 - epochs = 25 - fp16 = True - max_length = 32 ### Results on dev set For the dev set we got those results - size of the test set: 72k examples - CER: 0.13 - WER: 0.26 - Val Loss: 0.424 ## Usage ### inference.py ```python from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoTokenizer import requests from io import BytesIO from PIL import Image processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") model = VisionEncoderDecoderModel.from_pretrained("agomberto/trocr-base-printed-fr") tokenizer = AutoTokenizer.from_pretrained("agomberto/trocr-base-printed-fr") url = "https://raw.githubusercontent.com/aws-samples/sm-kornlp/main/trocr/sample_imgs/news_1.jpg" response = requests.get(url) img = Image.open(BytesIO(response.content)) pixel_values = processor(img, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values, max_length=32) generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_text) ``` All the code required for data collection and model training has been published on the author's Github. - https://github.com/agombert/trocr-base-printed-fr/