{ "_name_or_path": "google/efficientnet-b0", "architectures": [ "EfficientNetForImageClassification" ], "batch_norm_eps": 0.001, "batch_norm_momentum": 0.99, "depth_coefficient": 1.0, "depth_divisor": 8, "depthwise_padding": [], "drop_connect_rate": 0.2, "dropout_rate": 0.2, "expand_ratios": [ 1, 6, 6, 6, 6, 6, 6 ], "hidden_act": "swish", "hidden_dim": 1280, "id2label": { "0": "benign", "1": "normal thyroid", "2": "malignant" }, "image_size": 224, "in_channels": [ 32, 16, 24, 40, 80, 112, 192 ], "initializer_range": 0.02, "kernel_sizes": [ 3, 3, 5, 3, 5, 5, 3 ], "label2id": { "benign": 0, "malignant": 2, "normal thyroid": 1 }, "model_type": "efficientnet", "num_block_repeats": [ 1, 2, 2, 3, 3, 4, 1 ], "num_channels": 3, "num_hidden_layers": 64, "out_channels": [ 16, 24, 40, 80, 112, 192, 320 ], "out_features": null, "pooling_type": "mean", "problem_type": "single_label_classification", "squeeze_expansion_ratio": 0.25, "stage_names": [ "stem", "stage1", "stage2", "stage3", "stage4", "stage5", "stage6", "stage7" ], "strides": [ 1, 2, 2, 2, 1, 2, 1 ], "torch_dtype": "float32", "transformers_version": "4.41.0", "width_coefficient": 1.0 }