--- license: mit library_name: diffusers pipeline_tag: text-to-video --- # AccVideo: Accelerating Video Diffusion Model with Synthetic Dataset This repository contains the pre-trained weights of [AccVideo](https://arxiv.org/abs/2503.19462). AccVideo is a novel efficient distillation method to accelerate video diffusion models with synthetic datset. Our method is 8.5x faster than HunyuanVideo. [![arXiv](https://img.shields.io/badge/arXiv-2503.19462-b31b1b.svg)](https://arxiv.org/abs/2503.19462)[![Project Page](https://img.shields.io/badge/Project-Website-green)](https://aejion.github.io/accvideo/) ## 🔥🔥🔥 News * Mar, 2025: We release the inference code and model weights of AccVideo. ## 📑 Open-source Plan - [x] Inference - [x] Checkpoints - [ ] Multi-GPU Inference - [ ] Synthetic Video Dataset, SynVid - [ ] Training ## 🔧 Installation The code is tested on Python 3.10.0, CUDA 11.8 and A100. ``` conda create -n accvideo python==3.10.0 conda activate accvideo pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu118 pip install -r requirements.txt pip install flash-attn==2.7.3 --no-build-isolation pip install "huggingface_hub[cli]" ``` ## 🤗 Checkpoints To download the checkpoints, use the following command: ```bash # Download the model weight huggingface-cli download aejion/AccVideo --local-dir ./ckpts ``` ## 🚀 Inference We recommend using a GPU with 80GB of memory. To run the inference, use the following command: ```bash export MODEL_BASE=./ckpts python sample_t2v.py \ --height 544 \ --width 960 \ --num_frames 93 \ --num_inference_steps 50 \ --guidance_scale 1 \ --embedded_cfg_scale 6 \ --flow_shift 7 \ --flow-reverse \ --prompt_file ./assets/prompt.txt \ --seed 1024 \ --output_path ./results/accvideo-544p \ --model_path ./ckpts \ --dit-weight ./ckpts/accvideo-t2v-5-steps/diffusion_pytorch_model.pt ``` The following table shows the comparisons on inference time using a single A100 GPU: | Model | Setting(height/width/frame) | Inference Time(s) | |:------------:|:---------------------------:|:-----------------:| | HunyuanVideo | 720px1280px129f | 3234 | | Ours | 720px1280px129f | 380(8.5x faster) | | HunyuanVideo | 544px960px93f | 704 | | Ours | 544px960px93f | 91(7.7x faster) | ## 🔗 BibTeX If you find [AccVideo](https://arxiv.org/abs/2503.19462) useful for your research and applications, please cite using this BibTeX: ```BibTeX @article{zhang2025accvideo, title={AccVideo: Accelerating Video Diffusion Model with Synthetic Dataset}, author={Zhang, Haiyu and Chen, Xinyuan and Wang, Yaohui and Liu, Xihui and Wang, Yunhong and Qiao, Yu}, journal={arXiv preprint arXiv:2503.19462}, year={2025} } ``` ## Acknowledgements The code is built upon [FastVideo](https://github.com/hao-ai-lab/FastVideo) and [HunyuanVideo](https://github.com/Tencent/HunyuanVideo), we thank all the contributors for open-sourcing.