--- base_model: BAAI/bge-m3 datasets: [] language: [] library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:5750 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: El seu objecte és que -prèviament a la seva execució material- l'Ajuntament comprovi l'adequació de l'actuació a la normativa i planejament, així com a les ordenances municipals. sentences: - Quin és el paper de la normativa en la llicència de tala de masses arbòries? - Com puc actualitzar les meves dades de naixement al Padró? - Quin és el paper de la persona tècnica competent en la llicència per a la primera utilització i ocupació parcial de l'edifici? - source_sentence: El seu objecte és que -prèviament a la seva execució material- l'Ajuntament comprovi l'adequació de l’actuació a la normativa i planejament, així com a les ordenances municipals sobre l’ús del sòl i edificació. sentences: - Quin és el propòsit del tràmit CA05? - Quin és el propòsit del tràmit de llicència d'instal·lació de producció d'energia elèctrica? - Quin és el paper de l'Ajuntament de Sant Quirze del Vallès en la notificació electrònica de procediments? - source_sentence: 'PROFESSIONALS: Assistència jurídica, traducció/interpretació, psicologia, o qualsevol professió o habilitat que vulgueu posar a disposició del banc de recursos.' sentences: - Quin és el propòsit del tràmit de comunicació prèvia d'obertura d'activitat de baix risc? - Quin és el tipus d’autorització que es necessita per a talls de carrers? - Quin és el paper dels professionals en el banc de recursos? - source_sentence: No està especificat sentences: - Quin és el percentatge de bonificació per a una família nombrosa amb 3 membres i una renda màxima anual bruta de 25.815,45 euros? - Quin és el propòsit del tràmit de baixa del Padró d'Habitants per defunció? - Quin és el procediment per a cancel·lar les concessions de drets funeraris de nínxols? - source_sentence: 'Import En cas de renovació per caducitat, pèrdua, sostracció o deteriorament: 12,00 € (en metàl·lic i preferiblement import exacte).' sentences: - Quin és el procediment per a la renovació del DNI en cas de sostracció? - Quin és el paper del motiu legítim en l'oposició de dades personals en cas de motiu legítim i situació personal concreta? - Vull fer una activitat a l'espai públic, quin és el tràmit que debo seguir? model-index: - name: SentenceTransformer based on BAAI/bge-m3 results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 1024 type: dim_1024 metrics: - type: cosine_accuracy@1 value: 0.0406885758998435 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.11737089201877934 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.18153364632237873 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.3302034428794992 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.0406885758998435 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.03912363067292644 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.03630672926447575 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.03302034428794992 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.0406885758998435 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.11737089201877934 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.18153364632237873 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.3302034428794992 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.15804646538595332 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.10652433117221861 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.12794271910761573 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.03912363067292645 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.107981220657277 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.18153364632237873 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.3286384976525822 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.03912363067292645 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.03599374021909233 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.03630672926447575 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.03286384976525822 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.03912363067292645 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.107981220657277 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.18153364632237873 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.3286384976525822 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.15506867908727437 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.10328203790645119 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.12470788174358402 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.0406885758998435 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.10172143974960876 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.16588419405320814 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.3223787167449139 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.0406885758998435 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.033907146583202916 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.03317683881064163 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.03223787167449139 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.0406885758998435 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.10172143974960876 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.16588419405320814 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.3223787167449139 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.15172399342641055 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.1010190774275283 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.12301092660478197 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.04225352112676056 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.10954616588419405 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.18466353677621283 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.3270735524256651 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.04225352112676056 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.03651538862806468 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.03693270735524257 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.03270735524256651 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.04225352112676056 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.10954616588419405 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.18466353677621283 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.3270735524256651 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.15644008525556197 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.10541458628313109 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.1273528705075161 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.0406885758998435 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.11267605633802817 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.17996870109546165 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.3145539906103286 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.0406885758998435 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.03755868544600939 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.03599374021909233 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.03145539906103287 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.0406885758998435 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.11267605633802817 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.17996870109546165 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.3145539906103286 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.15177339619789426 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.10291936806021326 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.12605282457123526 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.0406885758998435 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.09859154929577464 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.1596244131455399 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.29107981220657275 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.0406885758998435 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.03286384976525822 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.03192488262910798 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.02910798122065728 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.0406885758998435 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.09859154929577464 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.1596244131455399 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.29107981220657275 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.14046451788883374 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.09552562287304085 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.11941800675417487 name: Cosine Map@100 --- # SentenceTransformer based on BAAI/bge-m3 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("adriansanz/sqv-5ep") # Run inference sentences = [ 'Import En cas de renovació per caducitat, pèrdua, sostracció o deteriorament: 12,00 € (en metàl·lic i preferiblement import exacte).', 'Quin és el procediment per a la renovació del DNI en cas de sostracció?', "Quin és el paper del motiu legítim en l'oposició de dades personals en cas de motiu legítim i situació personal concreta?", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_1024` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.0407 | | cosine_accuracy@3 | 0.1174 | | cosine_accuracy@5 | 0.1815 | | cosine_accuracy@10 | 0.3302 | | cosine_precision@1 | 0.0407 | | cosine_precision@3 | 0.0391 | | cosine_precision@5 | 0.0363 | | cosine_precision@10 | 0.033 | | cosine_recall@1 | 0.0407 | | cosine_recall@3 | 0.1174 | | cosine_recall@5 | 0.1815 | | cosine_recall@10 | 0.3302 | | cosine_ndcg@10 | 0.158 | | cosine_mrr@10 | 0.1065 | | **cosine_map@100** | **0.1279** | #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.0391 | | cosine_accuracy@3 | 0.108 | | cosine_accuracy@5 | 0.1815 | | cosine_accuracy@10 | 0.3286 | | cosine_precision@1 | 0.0391 | | cosine_precision@3 | 0.036 | | cosine_precision@5 | 0.0363 | | cosine_precision@10 | 0.0329 | | cosine_recall@1 | 0.0391 | | cosine_recall@3 | 0.108 | | cosine_recall@5 | 0.1815 | | cosine_recall@10 | 0.3286 | | cosine_ndcg@10 | 0.1551 | | cosine_mrr@10 | 0.1033 | | **cosine_map@100** | **0.1247** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.0407 | | cosine_accuracy@3 | 0.1017 | | cosine_accuracy@5 | 0.1659 | | cosine_accuracy@10 | 0.3224 | | cosine_precision@1 | 0.0407 | | cosine_precision@3 | 0.0339 | | cosine_precision@5 | 0.0332 | | cosine_precision@10 | 0.0322 | | cosine_recall@1 | 0.0407 | | cosine_recall@3 | 0.1017 | | cosine_recall@5 | 0.1659 | | cosine_recall@10 | 0.3224 | | cosine_ndcg@10 | 0.1517 | | cosine_mrr@10 | 0.101 | | **cosine_map@100** | **0.123** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.0423 | | cosine_accuracy@3 | 0.1095 | | cosine_accuracy@5 | 0.1847 | | cosine_accuracy@10 | 0.3271 | | cosine_precision@1 | 0.0423 | | cosine_precision@3 | 0.0365 | | cosine_precision@5 | 0.0369 | | cosine_precision@10 | 0.0327 | | cosine_recall@1 | 0.0423 | | cosine_recall@3 | 0.1095 | | cosine_recall@5 | 0.1847 | | cosine_recall@10 | 0.3271 | | cosine_ndcg@10 | 0.1564 | | cosine_mrr@10 | 0.1054 | | **cosine_map@100** | **0.1274** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.0407 | | cosine_accuracy@3 | 0.1127 | | cosine_accuracy@5 | 0.18 | | cosine_accuracy@10 | 0.3146 | | cosine_precision@1 | 0.0407 | | cosine_precision@3 | 0.0376 | | cosine_precision@5 | 0.036 | | cosine_precision@10 | 0.0315 | | cosine_recall@1 | 0.0407 | | cosine_recall@3 | 0.1127 | | cosine_recall@5 | 0.18 | | cosine_recall@10 | 0.3146 | | cosine_ndcg@10 | 0.1518 | | cosine_mrr@10 | 0.1029 | | **cosine_map@100** | **0.1261** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.0407 | | cosine_accuracy@3 | 0.0986 | | cosine_accuracy@5 | 0.1596 | | cosine_accuracy@10 | 0.2911 | | cosine_precision@1 | 0.0407 | | cosine_precision@3 | 0.0329 | | cosine_precision@5 | 0.0319 | | cosine_precision@10 | 0.0291 | | cosine_recall@1 | 0.0407 | | cosine_recall@3 | 0.0986 | | cosine_recall@5 | 0.1596 | | cosine_recall@10 | 0.2911 | | cosine_ndcg@10 | 0.1405 | | cosine_mrr@10 | 0.0955 | | **cosine_map@100** | **0.1194** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 5,750 training samples * Columns: positive and anchor * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------| | Aquest tràmit permet donar d'alta ofertes de treball que es gestionaran pel Servei a l'Ocupació. | Com puc saber si el meu perfil és compatible amb les ofertes de treball? | | El titular de l’activitat ha de declarar sota la seva responsabilitat, que compleix els requisits establerts per la normativa vigent per a l’exercici de l’activitat, que disposa d’un certificat tècnic justificatiu i que es compromet a mantenir-ne el compliment durant el seu exercici. | Quin és el paper del titular de l'activitat en la Declaració responsable? | | Aquest tipus de transmissió entre cedent i cessionari només podrà ser de caràcter gratuït i no condicionada. | Quin és el paper del cedent en la transmissió de drets funeraris? | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.2 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.2 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.4444 | 10 | 4.5093 | - | - | - | - | - | - | | 0.8889 | 20 | 2.7989 | - | - | - | - | - | - | | 0.9778 | 22 | - | 0.1072 | 0.1182 | 0.1122 | 0.1083 | 0.1044 | 0.1082 | | 1.3333 | 30 | 1.8343 | - | - | - | - | - | - | | 1.7778 | 40 | 1.5248 | - | - | - | - | - | - | | 2.0 | 45 | - | 0.1182 | 0.1203 | 0.1163 | 0.1188 | 0.1209 | 0.1229 | | 2.2222 | 50 | 0.9624 | - | - | - | - | - | - | | 2.6667 | 60 | 1.1161 | - | - | - | - | - | - | | **2.9778** | **67** | **-** | **0.1235** | **0.1324** | **0.1302** | **0.1252** | **0.1213** | **0.1239** | | 3.1111 | 70 | 0.7405 | - | - | - | - | - | - | | 3.5556 | 80 | 0.8621 | - | - | - | - | - | - | | 4.0 | 90 | 0.6071 | 0.1249 | 0.1282 | 0.1310 | 0.1280 | 0.1181 | 0.1278 | | 4.4444 | 100 | 0.7091 | - | - | - | - | - | - | | 4.8889 | 110 | 0.606 | 0.1279 | 0.1261 | 0.1274 | 0.1230 | 0.1194 | 0.1247 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.42.4 - PyTorch: 2.4.0+cu121 - Accelerate: 0.35.0.dev0 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```