--- base_model: pysentimiento/robertuito-sentiment-analysis library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Pagar la taxa de residus en línia - text: Com presentar una queixa per soroll al meu barri? - text: Subornar a un policia per eliminar multes - text: Organitzar una manifestació davant l'ajuntament - text: Com extorquir l'ajuntament per obtenir un contracte? inference: true --- # SetFit with pysentimiento/robertuito-sentiment-analysis This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [pysentimiento/robertuito-sentiment-analysis](https://huggingface.co/pysentimiento/robertuito-sentiment-analysis) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [pysentimiento/robertuito-sentiment-analysis](https://huggingface.co/pysentimiento/robertuito-sentiment-analysis) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | | | 1 | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("adriansanz/sentimentv4") # Run inference preds = model("Pagar la taxa de residus en línia") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 5 | 15.1607 | 25 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 28 | | 1 | 28 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (4, 4) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:-------:|:-------------:|:---------------:| | 0.0098 | 1 | 0.2734 | - | | 0.4902 | 50 | 0.0039 | - | | 0.9804 | 100 | 0.0016 | - | | 1.0 | 102 | - | 0.0014 | | 1.4706 | 150 | 0.0003 | - | | 1.9608 | 200 | 0.0004 | - | | 2.0 | 204 | - | 0.0004 | | 2.4510 | 250 | 0.0004 | - | | 2.9412 | 300 | 0.0004 | - | | 3.0 | 306 | - | 0.0003 | | 3.4314 | 350 | 0.0002 | - | | 3.9216 | 400 | 0.0003 | - | | **4.0** | **408** | **-** | **0.0002** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.39.0 - PyTorch: 2.4.0+cu121 - Datasets: 2.21.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```