---
base_model: pysentimiento/robertuito-sentiment-analysis
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Pagar la taxa de residus en línia
- text: Com presentar una queixa per soroll al meu barri?
- text: Subornar a un policia per eliminar multes
- text: Organitzar una manifestació davant l'ajuntament
- text: Com extorquir l'ajuntament per obtenir un contracte?
inference: true
---
# SetFit with pysentimiento/robertuito-sentiment-analysis
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [pysentimiento/robertuito-sentiment-analysis](https://huggingface.co/pysentimiento/robertuito-sentiment-analysis) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [pysentimiento/robertuito-sentiment-analysis](https://huggingface.co/pysentimiento/robertuito-sentiment-analysis)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 128 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 |
- "Aquest text és ofensiu o violent o negatiu o inapropiat o amb to irònic amb mala intenció per a un cercador de tràmits d'un ajuntament"
- "Aquest text és ofensiu o violent o negatiu o inapropiat o amb to irònic amb mala intenció per a un cercador de tràmits d'un ajuntament"
- "Aquest text és ofensiu o violent o negatiu o inapropiat o amb to irònic amb mala intenció per a un cercador de tràmits d'un ajuntament"
|
| 1 | - "Aquest text és valid per a un cercador de tràmits d'un ajuntament"
- "Aquest text és valid per a un cercador de tràmits d'un ajuntament"
- "Aquest text és valid per a un cercador de tràmits d'un ajuntament"
|
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("adriansanz/sentimentv4")
# Run inference
preds = model("Pagar la taxa de residus en línia")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 5 | 15.1607 | 25 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 28 |
| 1 | 28 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:-------:|:-------------:|:---------------:|
| 0.0098 | 1 | 0.2734 | - |
| 0.4902 | 50 | 0.0039 | - |
| 0.9804 | 100 | 0.0016 | - |
| 1.0 | 102 | - | 0.0014 |
| 1.4706 | 150 | 0.0003 | - |
| 1.9608 | 200 | 0.0004 | - |
| 2.0 | 204 | - | 0.0004 |
| 2.4510 | 250 | 0.0004 | - |
| 2.9412 | 300 | 0.0004 | - |
| 3.0 | 306 | - | 0.0003 |
| 3.4314 | 350 | 0.0002 | - |
| 3.9216 | 400 | 0.0003 | - |
| **4.0** | **408** | **-** | **0.0002** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.4.0+cu121
- Datasets: 2.21.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```