--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: intent_analysis results: [] --- # intent_analysis This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0083 - Accuracy: 0.9990 - Precision: 0.9990 - Recall: 0.9990 - F1: 0.9990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 76 | 0.0166 | 0.9971 | 0.9971 | 0.9971 | 0.9971 | | No log | 2.0 | 152 | 0.0074 | 0.9990 | 0.9990 | 0.9990 | 0.9990 | | No log | 3.0 | 228 | 0.0083 | 0.9990 | 0.9990 | 0.9990 | 0.9990 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3