--- base_model: BAAI/bge-m3 library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:4091 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: Aquest tràmit permet formalitzar la matrícula a les llars d’infants municipals, si l'infant ha estat admès al període de preinscripcions. sentences: - Quin és el tràmit que es realitza abans de la matrícula? - Quin és el propòsit de l'Ajuntament en aquest tràmit? - Què es pot fer amb les exclusions indegudes al Cens Electoral? - source_sentence: També cal que facis aquest tràmit per revocar o modificar les dades de correu electrònic i/o telèfon mòbil facilitades per portar a terme les notificacions. sentences: - Què passa si vull canviar la meva adreça de correu electrònic? - Quin és el resultat de no comunicar la finalització de les obres en el termini establert? - Quin és el procés de selecció de personal de l'Ajuntament de Viladecavalls? - source_sentence: Aquest tràmit et permet comunicar a l'ajuntament de Viladecavalls, l'actuació en representació fer efectuar un tràmit, d'acord a l'article 5 de la Llei 39/2015,d'1 d'octubre, del Procediment Administratiu Comú de les Administracions Públiques. sentences: - Quin és el registre que es relaciona amb les dades que es modifiquen? - Quan es pot consultar la llista definitiva d'admessos? - Quin és el paper de fer efectuar un tràmit en representació a tercers? - source_sentence: La taxa per la prestació del Servei de Gestió dels Residus Municipals. sentences: - Quins són els motius per inscriure's al Servei Local d'Ocupació? - Quin és el document que es necessita per a la sol·licitud de volants col·lectius o de convivència? - Quin és el paper de la taxa d'escombraries en aquest procés? - source_sentence: S'ha de comunicar la realització de focs d’esbarjo i qualsevol mena de crema de vegetació agrària en microexplotacions o petites explotacions agràries... sentences: - Què cal fer si no has rebut el document per pagar IVTM o IBI? - Quin és el tipus de explotacions agràries que estan subjectes a la comunicació de focs d'esbarjo o cremes de vegetació agrària en microexplotacions? - Quin és el paper de les bases de la convocatòria en la sol·licitud de subvenció? model-index: - name: SentenceTransformer based on BAAI/bge-m3 results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 1024 type: dim_1024 metrics: - type: cosine_accuracy@1 value: 0.12408759124087591 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.22627737226277372 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3357664233576642 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5328467153284672 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.12408759124087591 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.0754257907542579 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06715328467153285 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05328467153284672 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.12408759124087591 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.22627737226277372 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3357664233576642 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5328467153284672 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.28998901896488977 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.21748928281774996 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.24037395859471752 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.1386861313868613 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.26277372262773724 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3357664233576642 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5693430656934306 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.1386861313868613 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.08759124087591241 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06715328467153284 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05693430656934306 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1386861313868613 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.26277372262773724 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3357664233576642 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5693430656934306 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.31363827421519996 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.23752751708956085 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2568041111732728 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.1386861313868613 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.27007299270072993 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3795620437956204 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5693430656934306 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.1386861313868613 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.0900243309002433 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.07591240875912408 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05693430656934306 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1386861313868613 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.27007299270072993 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3795620437956204 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5693430656934306 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.317041085199572 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.24058046576294745 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2615607719139071 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.12408759124087591 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.2773722627737226 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.32116788321167883 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5182481751824818 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.12408759124087591 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.09245742092457421 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06423357664233577 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.051824817518248176 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.12408759124087591 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.2773722627737226 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.32116788321167883 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5182481751824818 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.29042019634687105 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.2218456725755996 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.24399596123266679 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.10948905109489052 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.25547445255474455 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.40145985401459855 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5401459854014599 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.10948905109489052 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.08515815085158149 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.08029197080291971 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05401459854014598 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.10948905109489052 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.25547445255474455 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.40145985401459855 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5401459854014599 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2983398214582463 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.22380952380952376 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2454078859030295 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.10948905109489052 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.20437956204379562 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3284671532846715 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5547445255474452 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.10948905109489052 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.06812652068126519 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06569343065693431 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05547445255474452 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.10948905109489052 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.20437956204379562 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3284671532846715 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5547445255474452 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.28965339873789575 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.21023635731664925 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.22988556376565739 name: Cosine Map@100 --- # SentenceTransformer based on BAAI/bge-m3 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("adriansanz/ST-tramits-VL-001-5ep") # Run inference sentences = [ "S'ha de comunicar la realització de focs d’esbarjo i qualsevol mena de crema de vegetació agrària en microexplotacions o petites explotacions agràries...", "Quin és el tipus de explotacions agràries que estan subjectes a la comunicació de focs d'esbarjo o cremes de vegetació agrària en microexplotacions?", 'Quin és el paper de les bases de la convocatòria en la sol·licitud de subvenció?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_1024` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1241 | | cosine_accuracy@3 | 0.2263 | | cosine_accuracy@5 | 0.3358 | | cosine_accuracy@10 | 0.5328 | | cosine_precision@1 | 0.1241 | | cosine_precision@3 | 0.0754 | | cosine_precision@5 | 0.0672 | | cosine_precision@10 | 0.0533 | | cosine_recall@1 | 0.1241 | | cosine_recall@3 | 0.2263 | | cosine_recall@5 | 0.3358 | | cosine_recall@10 | 0.5328 | | cosine_ndcg@10 | 0.29 | | cosine_mrr@10 | 0.2175 | | **cosine_map@100** | **0.2404** | #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1387 | | cosine_accuracy@3 | 0.2628 | | cosine_accuracy@5 | 0.3358 | | cosine_accuracy@10 | 0.5693 | | cosine_precision@1 | 0.1387 | | cosine_precision@3 | 0.0876 | | cosine_precision@5 | 0.0672 | | cosine_precision@10 | 0.0569 | | cosine_recall@1 | 0.1387 | | cosine_recall@3 | 0.2628 | | cosine_recall@5 | 0.3358 | | cosine_recall@10 | 0.5693 | | cosine_ndcg@10 | 0.3136 | | cosine_mrr@10 | 0.2375 | | **cosine_map@100** | **0.2568** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1387 | | cosine_accuracy@3 | 0.2701 | | cosine_accuracy@5 | 0.3796 | | cosine_accuracy@10 | 0.5693 | | cosine_precision@1 | 0.1387 | | cosine_precision@3 | 0.09 | | cosine_precision@5 | 0.0759 | | cosine_precision@10 | 0.0569 | | cosine_recall@1 | 0.1387 | | cosine_recall@3 | 0.2701 | | cosine_recall@5 | 0.3796 | | cosine_recall@10 | 0.5693 | | cosine_ndcg@10 | 0.317 | | cosine_mrr@10 | 0.2406 | | **cosine_map@100** | **0.2616** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.1241 | | cosine_accuracy@3 | 0.2774 | | cosine_accuracy@5 | 0.3212 | | cosine_accuracy@10 | 0.5182 | | cosine_precision@1 | 0.1241 | | cosine_precision@3 | 0.0925 | | cosine_precision@5 | 0.0642 | | cosine_precision@10 | 0.0518 | | cosine_recall@1 | 0.1241 | | cosine_recall@3 | 0.2774 | | cosine_recall@5 | 0.3212 | | cosine_recall@10 | 0.5182 | | cosine_ndcg@10 | 0.2904 | | cosine_mrr@10 | 0.2218 | | **cosine_map@100** | **0.244** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1095 | | cosine_accuracy@3 | 0.2555 | | cosine_accuracy@5 | 0.4015 | | cosine_accuracy@10 | 0.5401 | | cosine_precision@1 | 0.1095 | | cosine_precision@3 | 0.0852 | | cosine_precision@5 | 0.0803 | | cosine_precision@10 | 0.054 | | cosine_recall@1 | 0.1095 | | cosine_recall@3 | 0.2555 | | cosine_recall@5 | 0.4015 | | cosine_recall@10 | 0.5401 | | cosine_ndcg@10 | 0.2983 | | cosine_mrr@10 | 0.2238 | | **cosine_map@100** | **0.2454** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1095 | | cosine_accuracy@3 | 0.2044 | | cosine_accuracy@5 | 0.3285 | | cosine_accuracy@10 | 0.5547 | | cosine_precision@1 | 0.1095 | | cosine_precision@3 | 0.0681 | | cosine_precision@5 | 0.0657 | | cosine_precision@10 | 0.0555 | | cosine_recall@1 | 0.1095 | | cosine_recall@3 | 0.2044 | | cosine_recall@5 | 0.3285 | | cosine_recall@10 | 0.5547 | | cosine_ndcg@10 | 0.2897 | | cosine_mrr@10 | 0.2102 | | **cosine_map@100** | **0.2299** | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 4,091 training samples * Columns: positive and anchor * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------| | Posteriorment a l’obtenció de l’informe favorable, caldrà realitzar l’acte de comprovació en matèria d’incendis i procedir a efectuar la comunicació prèvia corresponent. | Quin és el resultat esperat després d'obtenir l'informe previ en matèria d'incendis? | | El certificat tècnic és un requisit per a l'exercici d'una activitat econòmica innòcua. | Quin és el paper del certificat tècnic en la Declaració responsable d'obertura? | | El document necessari per realitzar l'autoliquidació de taxa per llicència de primera ocupació és la llicència de primera ocupació de l'immoble. | Quin és el document necessari per realitzar l'autoliquidació de taxa per llicència de primera ocupació? | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.2 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.2 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 | |:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.625 | 10 | 4.3533 | - | - | - | - | - | - | | 1.0 | 16 | - | 0.2076 | 0.2123 | 0.2055 | 0.1996 | 0.2188 | 0.1861 | | 1.2461 | 20 | 2.4149 | - | - | - | - | - | - | | 1.8711 | 30 | 1.1968 | - | - | - | - | - | - | | 1.9961 | 32 | - | 0.2056 | 0.2318 | 0.2363 | 0.1932 | 0.2330 | 0.2255 | | 2.4922 | 40 | 0.7983 | - | - | - | - | - | - | | **2.9922** | **48** | **-** | **0.2322** | **0.2512** | **0.2514** | **0.2385** | **0.2437** | **0.2489** | | 3.1133 | 50 | 0.4869 | - | - | - | - | - | - | | 3.7383 | 60 | 0.3793 | - | - | - | - | - | - | | 3.9883 | 64 | - | 0.2414 | 0.2364 | 0.2365 | 0.2244 | 0.2167 | 0.2190 | | 4.3594 | 70 | 0.3421 | - | - | - | - | - | - | | 4.9844 | 80 | 0.2925 | 0.2404 | 0.2568 | 0.2616 | 0.2440 | 0.2454 | 0.2299 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.2.1 - Transformers: 4.44.2 - PyTorch: 2.5.0+cu121 - Accelerate: 1.1.0.dev0 - Datasets: 3.1.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```