--- base_model: BAAI/bge-m3 library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:2884 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: 'P.2 El contingut mínim del projecte és: a) Memòria justificativa, amb: - La descripció de la finca o finques d''origen amb indicació de les seves superfícies i llindars. - La descripció de les finques resultants, la seva superfície i els seus llindars...' sentences: - Quin és el format de sortida de la informació sobre aquesta ciutat? - Quins són els requisits bàsics per sol·licitar la subvenció? - Quin és el contingut mínim del projecte de parcel·lació? - source_sentence: 'La Comissió de Garanties té dues funcions: aclarir els dubtes interpretatius que es plantegin en l''aplicació del mateix.' sentences: - Quines són les dues funcions de la Comissió de Garanties? - Quin és el propòsit d'una llicència d'obres mitjanes en relació amb els moviments de terres? - Quin és el nom del conjunt d'habitatges que es troba al terme municipal de Viladecans? - source_sentence: 'No cal presentar al·legacions en els següents casos: En el cas que la baixa s’hagués iniciat per manca de confirmació bastarà amb realitzar el tràmit de confirmació per que l’expedient de baixa s’arxivi, sempre i quan continuï residint al mateix domicili.' sentences: - És necessari que una persona tècnica professional empleni els documents d'autocontrol? - Quin és el tema principal de la secció d'horari d'obertura i tancament? - Quan no cal presentar al·legacions en un expedient de baixa d'ofici? - source_sentence: L'Ajuntament de Sant Boi obre convocatòria de concessió de beques per col·laborar en el finançament de projectes i activitats dels i de les joves del municipi en diferents àmbits i promoure i facilitar els processos d'emancipació juvenils i garantir la igualtat d'oportunitats i la cohesió social entre la població jove. sentences: - Quin és el propòsit del servei de llista d'espera? - Quin és el problema que es tracta en aquest apartat? - Quin és l'objectiu de les beques per a joves 2024 de l'Ajuntament de Sant Boi? - source_sentence: Empadronament d'un/a menor en un domicili diferent al domicili dels progenitors - Amb autorització de les persones progenitores sentences: - Quin és el límit de temps màxim per al període de funcionament en proves? - Què es necessita per participar en aquest procediment de selecció? - Quin és el resultat de l'empadronament d'un/a menor en un domicili diferent al dels progenitors amb autorització? model-index: - name: SentenceTransformer based on BAAI/bge-m3 results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 1024 type: dim_1024 metrics: - type: cosine_accuracy@1 value: 0.3883495145631068 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6310679611650486 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7198335644937587 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8183079056865464 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3883495145631068 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.21035598705501618 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1439667128987517 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08183079056865464 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3883495145631068 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6310679611650486 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7198335644937587 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8183079056865464 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.596832375022475 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5265262091891769 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5337741877067146 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.37447988904299584 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6227461858529819 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.723994452149792 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8210818307905686 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.37447988904299584 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.207582061950994 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1447988904299584 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08210818307905685 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.37447988904299584 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6227461858529819 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.723994452149792 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8210818307905686 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5927947036265483 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5201010501287889 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5274048711370899 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.37309292649098474 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6213592233009708 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7184466019417476 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.826629680998613 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.37309292649098474 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2071197411003236 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1436893203883495 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08266296809986129 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.37309292649098474 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6213592233009708 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7184466019417476 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.826629680998613 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5933965794382484 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5193294146137418 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5262147141098168 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.39528432732316227 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6185852981969486 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6962552011095701 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8252427184466019 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.39528432732316227 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.20619509939898292 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.139251040221914 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.0825242718446602 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.39528432732316227 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6185852981969486 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6962552011095701 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8252427184466019 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5982896106972676 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5270165995200669 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.533875073833905 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.3828016643550624 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6033287101248266 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7059639389736477 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8155339805825242 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3828016643550624 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.20110957004160887 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.14119278779472955 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08155339805825243 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3828016643550624 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6033287101248266 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7059639389736477 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8155339805825242 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.589596475804869 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5181840697444022 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5258716600846131 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.37031900138696255 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5686546463245492 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6851595006934813 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7891816920943134 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.37031900138696255 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.18955154877484973 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.13703190013869623 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07891816920943133 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.37031900138696255 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5686546463245492 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6851595006934813 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7891816920943134 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5679462834016797 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.49845397706007927 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5067836651151116 name: Cosine Map@100 --- # SentenceTransformer based on BAAI/bge-m3 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("adriansanz/ST-tramits-SB-003-5ep") # Run inference sentences = [ "Empadronament d'un/a menor en un domicili diferent al domicili dels progenitors - Amb autorització de les persones progenitores", "Quin és el resultat de l'empadronament d'un/a menor en un domicili diferent al dels progenitors amb autorització?", 'Quin és el límit de temps màxim per al període de funcionament en proves?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_1024` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3883 | | cosine_accuracy@3 | 0.6311 | | cosine_accuracy@5 | 0.7198 | | cosine_accuracy@10 | 0.8183 | | cosine_precision@1 | 0.3883 | | cosine_precision@3 | 0.2104 | | cosine_precision@5 | 0.144 | | cosine_precision@10 | 0.0818 | | cosine_recall@1 | 0.3883 | | cosine_recall@3 | 0.6311 | | cosine_recall@5 | 0.7198 | | cosine_recall@10 | 0.8183 | | cosine_ndcg@10 | 0.5968 | | cosine_mrr@10 | 0.5265 | | **cosine_map@100** | **0.5338** | #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3745 | | cosine_accuracy@3 | 0.6227 | | cosine_accuracy@5 | 0.724 | | cosine_accuracy@10 | 0.8211 | | cosine_precision@1 | 0.3745 | | cosine_precision@3 | 0.2076 | | cosine_precision@5 | 0.1448 | | cosine_precision@10 | 0.0821 | | cosine_recall@1 | 0.3745 | | cosine_recall@3 | 0.6227 | | cosine_recall@5 | 0.724 | | cosine_recall@10 | 0.8211 | | cosine_ndcg@10 | 0.5928 | | cosine_mrr@10 | 0.5201 | | **cosine_map@100** | **0.5274** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3731 | | cosine_accuracy@3 | 0.6214 | | cosine_accuracy@5 | 0.7184 | | cosine_accuracy@10 | 0.8266 | | cosine_precision@1 | 0.3731 | | cosine_precision@3 | 0.2071 | | cosine_precision@5 | 0.1437 | | cosine_precision@10 | 0.0827 | | cosine_recall@1 | 0.3731 | | cosine_recall@3 | 0.6214 | | cosine_recall@5 | 0.7184 | | cosine_recall@10 | 0.8266 | | cosine_ndcg@10 | 0.5934 | | cosine_mrr@10 | 0.5193 | | **cosine_map@100** | **0.5262** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3953 | | cosine_accuracy@3 | 0.6186 | | cosine_accuracy@5 | 0.6963 | | cosine_accuracy@10 | 0.8252 | | cosine_precision@1 | 0.3953 | | cosine_precision@3 | 0.2062 | | cosine_precision@5 | 0.1393 | | cosine_precision@10 | 0.0825 | | cosine_recall@1 | 0.3953 | | cosine_recall@3 | 0.6186 | | cosine_recall@5 | 0.6963 | | cosine_recall@10 | 0.8252 | | cosine_ndcg@10 | 0.5983 | | cosine_mrr@10 | 0.527 | | **cosine_map@100** | **0.5339** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3828 | | cosine_accuracy@3 | 0.6033 | | cosine_accuracy@5 | 0.706 | | cosine_accuracy@10 | 0.8155 | | cosine_precision@1 | 0.3828 | | cosine_precision@3 | 0.2011 | | cosine_precision@5 | 0.1412 | | cosine_precision@10 | 0.0816 | | cosine_recall@1 | 0.3828 | | cosine_recall@3 | 0.6033 | | cosine_recall@5 | 0.706 | | cosine_recall@10 | 0.8155 | | cosine_ndcg@10 | 0.5896 | | cosine_mrr@10 | 0.5182 | | **cosine_map@100** | **0.5259** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3703 | | cosine_accuracy@3 | 0.5687 | | cosine_accuracy@5 | 0.6852 | | cosine_accuracy@10 | 0.7892 | | cosine_precision@1 | 0.3703 | | cosine_precision@3 | 0.1896 | | cosine_precision@5 | 0.137 | | cosine_precision@10 | 0.0789 | | cosine_recall@1 | 0.3703 | | cosine_recall@3 | 0.5687 | | cosine_recall@5 | 0.6852 | | cosine_recall@10 | 0.7892 | | cosine_ndcg@10 | 0.5679 | | cosine_mrr@10 | 0.4985 | | **cosine_map@100** | **0.5068** | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 2,884 training samples * Columns: positive and anchor * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------| | I assessorem per l'optimització dels contractes de subministraments energètics. | Quin és el resultat esperat del servei de millora dels contractes de serveis de llum i gas? | | Retorna en format JSON adequat | Quin és el format de sortida del qüestionari de projectes específics? | | Aula Mentor és un programa d'ajuda a l'alumne que té com a objectiu principal donar suport als estudiants en la seva formació i desenvolupament personal i professional. | Quin és el format del programa Aula Mentor? | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.2 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.2 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 | |:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.8840 | 10 | 2.6418 | - | - | - | - | - | - | | 0.9724 | 11 | - | 0.4986 | 0.5108 | 0.5014 | 0.4934 | 0.4779 | 0.4351 | | 1.7680 | 20 | 1.1708 | - | - | - | - | - | - | | 1.9448 | 22 | - | 0.5197 | 0.5248 | 0.5195 | 0.5290 | 0.5052 | 0.4904 | | 2.6519 | 30 | 0.5531 | - | - | - | - | - | - | | 2.9171 | 33 | - | 0.5304 | 0.5274 | 0.5196 | 0.5279 | 0.5234 | 0.4947 | | 3.5359 | 40 | 0.2859 | - | - | - | - | - | - | | 3.9779 | 45 | - | 0.5256 | 0.5292 | 0.5206 | 0.5313 | 0.5174 | 0.5046 | | 4.4199 | 50 | 0.2144 | - | - | - | - | - | - | | **4.8619** | **55** | **-** | **0.5338** | **0.5274** | **0.5262** | **0.5339** | **0.5259** | **0.5068** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.2.0 - Transformers: 4.44.2 - PyTorch: 2.4.1+cu121 - Accelerate: 1.1.0.dev0 - Datasets: 3.0.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```