--- base_model: BAAI/bge-m3 library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:2372 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: Heu de veure si és necessari un estudi d'aïllament acústic i quin nivell d'aïllament acústic precisa l'activitat. sentences: - Quin és el paper de les persones que resideixen amb el titular del dret d'habitatge en la política d'habitatge? - Quin és el límit de superfície per a les carpes informatives? - Quin és l'objectiu de l'estudi d'aïllament acústic? - source_sentence: 'Si us voleu matricular al proper curs 2022-2023 d''arts plàstiques ho podeu fer a partir del 1 de juliol a les 16h, seleccionant una d''aquestes opcions:' sentences: - Quin és el període de matrícula per al curs 2022-2023 d'arts plàstiques? - Quan no cal presentar al·legacions en un expedient de baixa d'ofici? - Quin és l'objectiu de les al·legacions respecte a un expedient sancionador de l'Ordenança Municipal de Civisme i Convivència Ciutadana? - source_sentence: Annexes Econòmics (Cooperació) sentences: - Qui és el responsable de l'elaboració de l'informe d'adequació de l'habitatge? - Què han de fer les persones interessades durant el tràmit d'audiència en el procés d'inclusió al registre municipal d'immobles desocupats? - Quin és l'àmbit de la cooperació econòmica? - source_sentence: En virtut del conveni de col.laboració amb l'Atrium de Viladecans, tots els ciutadans que acreditin la seva residència a Viladecans es podran beneficiar d'un 20% de descompte en la programació de teatre, música i dansa, objecte del conveni. sentences: - Quin és el resultat de consultar un expedient d'activitats? - Quin és el format de resposta d'aquesta sol·licitud? - Quin és el descompte que s'aplica en la programació de teatre, música i dansa per als ciutadans de Viladecans? - source_sentence: Descripció. Retorna en format JSON adequat sentences: - Quin és el contingut de l'annex específic? - Quin tipus d'ocupació es refereix a la renúncia de la llicència? - Què passa amb l'habitatge? model-index: - name: SentenceTransformer based on BAAI/bge-m3 results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 1024 type: dim_1024 metrics: - type: cosine_accuracy@1 value: 0.33220910623946037 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5902192242833052 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6998313659359191 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8094435075885329 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.33220910623946037 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1967397414277684 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1399662731871838 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08094435075885327 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.33220910623946037 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5902192242833052 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6998313659359191 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8094435075885329 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5625986746470664 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4843170320404718 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.49243646079034575 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.3406408094435076 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5767284991568297 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6981450252951096 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8161888701517707 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3406408094435076 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.19224283305227655 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1396290050590219 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08161888701517706 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3406408094435076 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5767284991568297 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6981450252951096 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8161888701517707 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5661348054508011 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4872065633448428 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.49520736709122076 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.3305227655986509 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5801011804384486 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6947723440134908 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8161888701517707 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3305227655986509 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.19336706014614952 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.13895446880269813 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08161888701517707 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3305227655986509 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5801011804384486 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6947723440134908 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8161888701517707 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5629643418278626 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4829913809256133 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.49079988310494693 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.3288364249578415 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5885328836424958 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7015177065767285 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8094435075885329 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3288364249578415 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1961776278808319 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.14030354131534567 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08094435075885327 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3288364249578415 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5885328836424958 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7015177065767285 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8094435075885329 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5625842077927447 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.48416981182579805 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.49201787335851555 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.3473861720067454 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.581787521079258 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6998313659359191 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.806070826306914 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3473861720067454 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.19392917369308602 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1399662731871838 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.0806070826306914 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3473861720067454 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.581787521079258 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6998313659359191 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.806070826306914 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.565365572327355 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4893626703070211 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.49726527073459287 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.2917369308600337 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5682967959527825 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6644182124789207 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7875210792580101 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.2917369308600337 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.18943226531759413 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.13288364249578413 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07875210792580102 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.2917369308600337 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5682967959527825 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6644182124789207 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7875210792580101 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5320349463938843 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.45117106988945077 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.45948574441166834 name: Cosine Map@100 --- # SentenceTransformer based on BAAI/bge-m3 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("adriansanz/ST-tramits-SB-001-5ep") # Run inference sentences = [ 'Descripció. Retorna en format JSON adequat', "Quin és el contingut de l'annex específic?", "Què passa amb l'habitatge?", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_1024` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3322 | | cosine_accuracy@3 | 0.5902 | | cosine_accuracy@5 | 0.6998 | | cosine_accuracy@10 | 0.8094 | | cosine_precision@1 | 0.3322 | | cosine_precision@3 | 0.1967 | | cosine_precision@5 | 0.14 | | cosine_precision@10 | 0.0809 | | cosine_recall@1 | 0.3322 | | cosine_recall@3 | 0.5902 | | cosine_recall@5 | 0.6998 | | cosine_recall@10 | 0.8094 | | cosine_ndcg@10 | 0.5626 | | cosine_mrr@10 | 0.4843 | | **cosine_map@100** | **0.4924** | #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3406 | | cosine_accuracy@3 | 0.5767 | | cosine_accuracy@5 | 0.6981 | | cosine_accuracy@10 | 0.8162 | | cosine_precision@1 | 0.3406 | | cosine_precision@3 | 0.1922 | | cosine_precision@5 | 0.1396 | | cosine_precision@10 | 0.0816 | | cosine_recall@1 | 0.3406 | | cosine_recall@3 | 0.5767 | | cosine_recall@5 | 0.6981 | | cosine_recall@10 | 0.8162 | | cosine_ndcg@10 | 0.5661 | | cosine_mrr@10 | 0.4872 | | **cosine_map@100** | **0.4952** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3305 | | cosine_accuracy@3 | 0.5801 | | cosine_accuracy@5 | 0.6948 | | cosine_accuracy@10 | 0.8162 | | cosine_precision@1 | 0.3305 | | cosine_precision@3 | 0.1934 | | cosine_precision@5 | 0.139 | | cosine_precision@10 | 0.0816 | | cosine_recall@1 | 0.3305 | | cosine_recall@3 | 0.5801 | | cosine_recall@5 | 0.6948 | | cosine_recall@10 | 0.8162 | | cosine_ndcg@10 | 0.563 | | cosine_mrr@10 | 0.483 | | **cosine_map@100** | **0.4908** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.3288 | | cosine_accuracy@3 | 0.5885 | | cosine_accuracy@5 | 0.7015 | | cosine_accuracy@10 | 0.8094 | | cosine_precision@1 | 0.3288 | | cosine_precision@3 | 0.1962 | | cosine_precision@5 | 0.1403 | | cosine_precision@10 | 0.0809 | | cosine_recall@1 | 0.3288 | | cosine_recall@3 | 0.5885 | | cosine_recall@5 | 0.7015 | | cosine_recall@10 | 0.8094 | | cosine_ndcg@10 | 0.5626 | | cosine_mrr@10 | 0.4842 | | **cosine_map@100** | **0.492** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3474 | | cosine_accuracy@3 | 0.5818 | | cosine_accuracy@5 | 0.6998 | | cosine_accuracy@10 | 0.8061 | | cosine_precision@1 | 0.3474 | | cosine_precision@3 | 0.1939 | | cosine_precision@5 | 0.14 | | cosine_precision@10 | 0.0806 | | cosine_recall@1 | 0.3474 | | cosine_recall@3 | 0.5818 | | cosine_recall@5 | 0.6998 | | cosine_recall@10 | 0.8061 | | cosine_ndcg@10 | 0.5654 | | cosine_mrr@10 | 0.4894 | | **cosine_map@100** | **0.4973** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.2917 | | cosine_accuracy@3 | 0.5683 | | cosine_accuracy@5 | 0.6644 | | cosine_accuracy@10 | 0.7875 | | cosine_precision@1 | 0.2917 | | cosine_precision@3 | 0.1894 | | cosine_precision@5 | 0.1329 | | cosine_precision@10 | 0.0788 | | cosine_recall@1 | 0.2917 | | cosine_recall@3 | 0.5683 | | cosine_recall@5 | 0.6644 | | cosine_recall@10 | 0.7875 | | cosine_ndcg@10 | 0.532 | | cosine_mrr@10 | 0.4512 | | **cosine_map@100** | **0.4595** | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 2,372 training samples * Columns: positive and anchor * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------| | Comunicar la variació d'alguna de les següents dades del Padró Municipal d'Habitants: Nom, Cognoms, Data de naixement, DNI, Passaport, Número de permís de residència (NIE), Sexe, Municipi i/o província de naixement, Nacionalitat, Titulació acadèmica. | Quin és l'objectiu del canvi de dades personals en el Padró Municipal d'Habitants? | | EN QUÈ CONSISTEIX: Tramitar la sol·licitud de matrimoni civil a l'Ajuntament. | Què és el matrimoni civil a l'Ajuntament de Sant Boi de Llobregat? | | En domiciliar el pagament de tributs municipals en entitats bancàries. | Quin és el benefici de domiciliar el pagament de tributs? | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.2 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.2 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 | |:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.9664 | 9 | - | 0.4730 | 0.4766 | 0.4640 | 0.4612 | 0.4456 | 0.4083 | | 1.0738 | 10 | 2.6023 | - | - | - | - | - | - | | 1.9329 | 18 | - | 0.4951 | 0.4966 | 0.4977 | 0.4773 | 0.4849 | 0.4501 | | 2.1477 | 20 | 0.974 | - | - | - | - | - | - | | 2.8993 | 27 | - | 0.4891 | 0.4973 | 0.4941 | 0.4867 | 0.4925 | 0.4684 | | 3.2215 | 30 | 0.408 | - | - | - | - | - | - | | **3.9732** | **37** | **-** | **0.4944** | **0.4998** | **0.4931** | **0.4991** | **0.4974** | **0.4616** | | 4.2953 | 40 | 0.2718 | - | - | - | - | - | - | | 4.8322 | 45 | - | 0.4924 | 0.4952 | 0.4908 | 0.4920 | 0.4973 | 0.4595 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.2.0 - Transformers: 4.44.2 - PyTorch: 2.4.1+cu121 - Accelerate: 1.1.0.dev0 - Datasets: 3.0.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```