---
base_model: BAAI/bge-m3
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2372
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Heu de veure si és necessari un estudi d'aïllament acústic i quin
nivell d'aïllament acústic precisa l'activitat.
sentences:
- Quin és el paper de les persones que resideixen amb el titular del dret d'habitatge
en la política d'habitatge?
- Quin és el límit de superfície per a les carpes informatives?
- Quin és l'objectiu de l'estudi d'aïllament acústic?
- source_sentence: 'Si us voleu matricular al proper curs 2022-2023 d''arts plàstiques
ho podeu fer a partir del 1 de juliol a les 16h, seleccionant una d''aquestes
opcions:'
sentences:
- Quin és el període de matrícula per al curs 2022-2023 d'arts plàstiques?
- Quan no cal presentar al·legacions en un expedient de baixa d'ofici?
- Quin és l'objectiu de les al·legacions respecte a un expedient sancionador de
l'Ordenança Municipal de Civisme i Convivència Ciutadana?
- source_sentence: Annexes Econòmics (Cooperació)
sentences:
- Qui és el responsable de l'elaboració de l'informe d'adequació de l'habitatge?
- Què han de fer les persones interessades durant el tràmit d'audiència en el procés
d'inclusió al registre municipal d'immobles desocupats?
- Quin és l'àmbit de la cooperació econòmica?
- source_sentence: En virtut del conveni de col.laboració amb l'Atrium de Viladecans,
tots els ciutadans que acreditin la seva residència a Viladecans es podran beneficiar
d'un 20% de descompte en la programació de teatre, música i dansa, objecte del
conveni.
sentences:
- Quin és el resultat de consultar un expedient d'activitats?
- Quin és el format de resposta d'aquesta sol·licitud?
- Quin és el descompte que s'aplica en la programació de teatre, música i dansa
per als ciutadans de Viladecans?
- source_sentence: Descripció. Retorna en format JSON adequat
sentences:
- Quin és el contingut de l'annex específic?
- Quin tipus d'ocupació es refereix a la renúncia de la llicència?
- Què passa amb l'habitatge?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.33220910623946037
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5902192242833052
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6998313659359191
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8094435075885329
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.33220910623946037
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1967397414277684
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1399662731871838
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08094435075885327
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.33220910623946037
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5902192242833052
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6998313659359191
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8094435075885329
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5625986746470664
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4843170320404718
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.49243646079034575
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.3406408094435076
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5767284991568297
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6981450252951096
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8161888701517707
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3406408094435076
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.19224283305227655
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1396290050590219
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08161888701517706
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3406408094435076
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5767284991568297
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6981450252951096
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8161888701517707
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5661348054508011
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4872065633448428
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.49520736709122076
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.3305227655986509
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5801011804384486
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6947723440134908
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8161888701517707
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3305227655986509
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.19336706014614952
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13895446880269813
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08161888701517707
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3305227655986509
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5801011804384486
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6947723440134908
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8161888701517707
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5629643418278626
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4829913809256133
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.49079988310494693
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.3288364249578415
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5885328836424958
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7015177065767285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8094435075885329
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3288364249578415
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1961776278808319
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14030354131534567
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08094435075885327
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3288364249578415
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5885328836424958
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7015177065767285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8094435075885329
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5625842077927447
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.48416981182579805
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.49201787335851555
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.3473861720067454
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.581787521079258
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6998313659359191
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.806070826306914
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3473861720067454
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.19392917369308602
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1399662731871838
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0806070826306914
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3473861720067454
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.581787521079258
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6998313659359191
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.806070826306914
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.565365572327355
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4893626703070211
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.49726527073459287
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.2917369308600337
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5682967959527825
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6644182124789207
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7875210792580101
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2917369308600337
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18943226531759413
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13288364249578413
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07875210792580102
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2917369308600337
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5682967959527825
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6644182124789207
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7875210792580101
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5320349463938843
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.45117106988945077
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.45948574441166834
name: Cosine Map@100
---
# SentenceTransformer based on BAAI/bge-m3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3)
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/ST-tramits-SB-001-5ep")
# Run inference
sentences = [
'Descripció. Retorna en format JSON adequat',
"Quin és el contingut de l'annex específic?",
"Què passa amb l'habitatge?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3322 |
| cosine_accuracy@3 | 0.5902 |
| cosine_accuracy@5 | 0.6998 |
| cosine_accuracy@10 | 0.8094 |
| cosine_precision@1 | 0.3322 |
| cosine_precision@3 | 0.1967 |
| cosine_precision@5 | 0.14 |
| cosine_precision@10 | 0.0809 |
| cosine_recall@1 | 0.3322 |
| cosine_recall@3 | 0.5902 |
| cosine_recall@5 | 0.6998 |
| cosine_recall@10 | 0.8094 |
| cosine_ndcg@10 | 0.5626 |
| cosine_mrr@10 | 0.4843 |
| **cosine_map@100** | **0.4924** |
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3406 |
| cosine_accuracy@3 | 0.5767 |
| cosine_accuracy@5 | 0.6981 |
| cosine_accuracy@10 | 0.8162 |
| cosine_precision@1 | 0.3406 |
| cosine_precision@3 | 0.1922 |
| cosine_precision@5 | 0.1396 |
| cosine_precision@10 | 0.0816 |
| cosine_recall@1 | 0.3406 |
| cosine_recall@3 | 0.5767 |
| cosine_recall@5 | 0.6981 |
| cosine_recall@10 | 0.8162 |
| cosine_ndcg@10 | 0.5661 |
| cosine_mrr@10 | 0.4872 |
| **cosine_map@100** | **0.4952** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3305 |
| cosine_accuracy@3 | 0.5801 |
| cosine_accuracy@5 | 0.6948 |
| cosine_accuracy@10 | 0.8162 |
| cosine_precision@1 | 0.3305 |
| cosine_precision@3 | 0.1934 |
| cosine_precision@5 | 0.139 |
| cosine_precision@10 | 0.0816 |
| cosine_recall@1 | 0.3305 |
| cosine_recall@3 | 0.5801 |
| cosine_recall@5 | 0.6948 |
| cosine_recall@10 | 0.8162 |
| cosine_ndcg@10 | 0.563 |
| cosine_mrr@10 | 0.483 |
| **cosine_map@100** | **0.4908** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.3288 |
| cosine_accuracy@3 | 0.5885 |
| cosine_accuracy@5 | 0.7015 |
| cosine_accuracy@10 | 0.8094 |
| cosine_precision@1 | 0.3288 |
| cosine_precision@3 | 0.1962 |
| cosine_precision@5 | 0.1403 |
| cosine_precision@10 | 0.0809 |
| cosine_recall@1 | 0.3288 |
| cosine_recall@3 | 0.5885 |
| cosine_recall@5 | 0.7015 |
| cosine_recall@10 | 0.8094 |
| cosine_ndcg@10 | 0.5626 |
| cosine_mrr@10 | 0.4842 |
| **cosine_map@100** | **0.492** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3474 |
| cosine_accuracy@3 | 0.5818 |
| cosine_accuracy@5 | 0.6998 |
| cosine_accuracy@10 | 0.8061 |
| cosine_precision@1 | 0.3474 |
| cosine_precision@3 | 0.1939 |
| cosine_precision@5 | 0.14 |
| cosine_precision@10 | 0.0806 |
| cosine_recall@1 | 0.3474 |
| cosine_recall@3 | 0.5818 |
| cosine_recall@5 | 0.6998 |
| cosine_recall@10 | 0.8061 |
| cosine_ndcg@10 | 0.5654 |
| cosine_mrr@10 | 0.4894 |
| **cosine_map@100** | **0.4973** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.2917 |
| cosine_accuracy@3 | 0.5683 |
| cosine_accuracy@5 | 0.6644 |
| cosine_accuracy@10 | 0.7875 |
| cosine_precision@1 | 0.2917 |
| cosine_precision@3 | 0.1894 |
| cosine_precision@5 | 0.1329 |
| cosine_precision@10 | 0.0788 |
| cosine_recall@1 | 0.2917 |
| cosine_recall@3 | 0.5683 |
| cosine_recall@5 | 0.6644 |
| cosine_recall@10 | 0.7875 |
| cosine_ndcg@10 | 0.532 |
| cosine_mrr@10 | 0.4512 |
| **cosine_map@100** | **0.4595** |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 2,372 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
Comunicar la variació d'alguna de les següents dades del Padró Municipal d'Habitants: Nom, Cognoms, Data de naixement, DNI, Passaport, Número de permís de residència (NIE), Sexe, Municipi i/o província de naixement, Nacionalitat, Titulació acadèmica.
| Quin és l'objectiu del canvi de dades personals en el Padró Municipal d'Habitants?
|
| EN QUÈ CONSISTEIX: Tramitar la sol·licitud de matrimoni civil a l'Ajuntament.
| Què és el matrimoni civil a l'Ajuntament de Sant Boi de Llobregat?
|
| En domiciliar el pagament de tributs municipals en entitats bancàries.
| Quin és el benefici de domiciliar el pagament de tributs?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters