--- license: apache-2.0 base_model: projecte-aina/roberta-base-ca-v2-cased-te tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 2404v7 results: [] --- # 2404v7 This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6435 - Accuracy: 0.8487 - Precision: 0.8488 - Recall: 0.8487 - F1: 0.8487 - Ratio: 0.4916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - lr_scheduler_warmup_steps: 4 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | 3.5609 | 0.2597 | 10 | 1.6738 | 0.5168 | 0.5191 | 0.5168 | 0.5020 | 0.3277 | | 1.4146 | 0.5195 | 20 | 0.9720 | 0.5294 | 0.5309 | 0.5294 | 0.5237 | 0.6092 | | 0.924 | 0.7792 | 30 | 0.9377 | 0.5 | 0.25 | 0.5 | 0.3333 | 1.0 | | 0.9189 | 1.0390 | 40 | 0.8705 | 0.5042 | 0.7511 | 0.5042 | 0.3426 | 0.0042 | | 0.8741 | 1.2987 | 50 | 0.8415 | 0.5 | 0.25 | 0.5 | 0.3333 | 1.0 | | 0.8001 | 1.5584 | 60 | 0.7613 | 0.7311 | 0.7640 | 0.7311 | 0.7224 | 0.6765 | | 0.7156 | 1.8182 | 70 | 0.6827 | 0.7773 | 0.8070 | 0.7773 | 0.7718 | 0.3445 | | 0.7028 | 2.0779 | 80 | 0.6722 | 0.7941 | 0.7967 | 0.7941 | 0.7937 | 0.4538 | | 0.5612 | 2.3377 | 90 | 0.6600 | 0.7689 | 0.7776 | 0.7689 | 0.7671 | 0.5882 | | 0.5967 | 2.5974 | 100 | 0.6264 | 0.8067 | 0.8075 | 0.8067 | 0.8066 | 0.5252 | | 0.6661 | 2.8571 | 110 | 0.6225 | 0.8193 | 0.8260 | 0.8193 | 0.8184 | 0.4286 | | 0.6454 | 3.1169 | 120 | 0.6108 | 0.8109 | 0.8336 | 0.8109 | 0.8077 | 0.6303 | | 0.541 | 3.3766 | 130 | 0.6002 | 0.8235 | 0.8311 | 0.8235 | 0.8225 | 0.4244 | | 0.538 | 3.6364 | 140 | 0.5880 | 0.8403 | 0.8428 | 0.8403 | 0.8401 | 0.5420 | | 0.5157 | 3.8961 | 150 | 0.5845 | 0.8529 | 0.8603 | 0.8529 | 0.8522 | 0.4286 | | 0.4868 | 4.1558 | 160 | 0.6059 | 0.8403 | 0.8548 | 0.8403 | 0.8387 | 0.6008 | | 0.4877 | 4.4156 | 170 | 0.5575 | 0.8571 | 0.8572 | 0.8571 | 0.8571 | 0.4916 | | 0.4758 | 4.6753 | 180 | 0.5656 | 0.8403 | 0.8403 | 0.8403 | 0.8403 | 0.5 | | 0.4686 | 4.9351 | 190 | 0.5736 | 0.8571 | 0.8581 | 0.8571 | 0.8571 | 0.5252 | | 0.4311 | 5.1948 | 200 | 0.5755 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.5 | | 0.4452 | 5.4545 | 210 | 0.6053 | 0.8487 | 0.8491 | 0.8487 | 0.8487 | 0.5168 | | 0.4396 | 5.7143 | 220 | 0.5726 | 0.8613 | 0.8614 | 0.8613 | 0.8613 | 0.4958 | | 0.4923 | 5.9740 | 230 | 0.5534 | 0.8487 | 0.8487 | 0.8487 | 0.8487 | 0.5 | | 0.4002 | 6.2338 | 240 | 0.5841 | 0.8445 | 0.8446 | 0.8445 | 0.8445 | 0.5042 | | 0.3887 | 6.4935 | 250 | 0.6092 | 0.8361 | 0.8402 | 0.8361 | 0.8356 | 0.5546 | | 0.402 | 6.7532 | 260 | 0.6164 | 0.8445 | 0.8446 | 0.8445 | 0.8445 | 0.4958 | | 0.4644 | 7.0130 | 270 | 0.6094 | 0.8571 | 0.8622 | 0.8571 | 0.8566 | 0.4412 | | 0.3905 | 7.2727 | 280 | 0.5938 | 0.8487 | 0.8503 | 0.8487 | 0.8486 | 0.5336 | | 0.3836 | 7.5325 | 290 | 0.6080 | 0.8487 | 0.8496 | 0.8487 | 0.8486 | 0.5252 | | 0.3781 | 7.7922 | 300 | 0.6193 | 0.8529 | 0.8530 | 0.8529 | 0.8529 | 0.4958 | | 0.4384 | 8.0519 | 310 | 0.6211 | 0.8529 | 0.8532 | 0.8529 | 0.8529 | 0.4874 | | 0.3324 | 8.3117 | 320 | 0.6312 | 0.8445 | 0.8446 | 0.8445 | 0.8445 | 0.4958 | | 0.3779 | 8.5714 | 330 | 0.6394 | 0.8529 | 0.8532 | 0.8529 | 0.8529 | 0.4874 | | 0.3772 | 8.8312 | 340 | 0.6415 | 0.8529 | 0.8530 | 0.8529 | 0.8529 | 0.4958 | | 0.3757 | 9.0909 | 350 | 0.6464 | 0.8403 | 0.8404 | 0.8403 | 0.8403 | 0.5084 | | 0.3742 | 9.3506 | 360 | 0.6441 | 0.8487 | 0.8487 | 0.8487 | 0.8487 | 0.5 | | 0.3647 | 9.6104 | 370 | 0.6437 | 0.8487 | 0.8488 | 0.8487 | 0.8487 | 0.4916 | | 0.3502 | 9.8701 | 380 | 0.6435 | 0.8487 | 0.8488 | 0.8487 | 0.8487 | 0.4916 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1