--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: distilbert-base-uncased-fine-tuned-emotions results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.9335 --- # distilbert-base-uncased-fine-tuned-emotions This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1377 - Accuracy: 0.9335 - F1 Score: 0.9338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 0.478 | 1.0 | 125 | 0.1852 | 0.931 | 0.9309 | | 0.1285 | 2.0 | 250 | 0.1377 | 0.9335 | 0.9338 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.8.1+cu101 - Datasets 2.7.1 - Tokenizers 0.10.1