--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - audio-classification - deepfake - audio-spoof - generated_from_trainer metrics: - accuracy model-index: - name: hubert-base-960h-itw-deepfake results: [] language: - en --- # hubert-base-960h-itw-deepfake This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0756 - Accuracy: 0.9873 - FAR: 0.0083 - FRR: 0.0203 - EER: 0.0143 ## Model description ### Quick Use ```python device = torch.device("cuda" if torch.cuda.is_available() else "cpu") config = AutoConfig.from_pretrained("abhishtagatya/hubert-base-960h-itw-deepfake") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("abhishtagatya/hubert-base-960h-itw-deepfake") model = HubertForSequenceClassification.from_pretrained("abhishtagatya/hubert-base-960h-itw-deepfake", config=config,).to(device) # Your Logic Here ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | FAR | FRR | EER | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:------:| | 0.4081 | 0.39 | 2500 | 0.1152 | 0.9722 | 0.0285 | 0.0267 | 0.0276 | | 0.1168 | 0.79 | 5000 | 0.0822 | 0.9844 | 0.0120 | 0.0216 | 0.0168 | | 0.0979 | 1.18 | 7500 | 0.0896 | 0.9846 | 0.0130 | 0.0195 | 0.0162 | | 0.0983 | 1.57 | 10000 | 0.1007 | 0.9833 | 0.0155 | 0.0186 | 0.0171 | | 0.0901 | 1.97 | 12500 | 0.0756 | 0.9873 | 0.0083 | 0.0203 | 0.0143 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.1