--- language: - en license: apache-2.0 library_name: transformers datasets: - Intel/orca_dpo_pairs - nvidia/HelpSteer - jondurbin/truthy-dpo-v0.1 pipeline_tag: text-generation model-index: - name: mistral-7B-forest-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 60.58 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhishekchohan/mistral-7B-forest-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.13 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhishekchohan/mistral-7B-forest-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.69 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhishekchohan/mistral-7B-forest-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 43.7 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhishekchohan/mistral-7B-forest-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.06 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhishekchohan/mistral-7B-forest-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 35.56 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abhishekchohan/mistral-7B-forest-v0.1 name: Open LLM Leaderboard --- ### Mistral-7B-Forest-DPO Introducing Mistral-7B-Forest-DPO, a LLM fine-tuned with base model mistralai/Mistral-7B-v0.1, using direct preference optimization. This model showcases exceptional prowess across a spectrum of natural language processing (NLP) tasks. A mixture of the following datasets was used for fine-tuning. 1. Intel/orca_dpo_pairs 2. nvidia/HelpSteer 3. jondurbin/truthy-dpo-v0.1 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "abhishekchohan/mistral-7B-forest-dpo" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abhishekchohan__mistral-7B-forest-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |60.79| |AI2 Reasoning Challenge (25-Shot)|60.58| |HellaSwag (10-Shot) |83.13| |MMLU (5-Shot) |63.69| |TruthfulQA (0-shot) |43.70| |Winogrande (5-shot) |78.06| |GSM8k (5-shot) |35.56|