--- tags: - merge - mergekit - lazymergekit - aaditya/Llama3-OpenBioLLM-8B base_model: - aaditya/Llama3-OpenBioLLM-8B license: llama3 language: - en --- # Llama-3-Galen-8B-32k-v1 Llama-3-Galen-8B-32k-v1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [aaditya/Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B) > **This model is capable of handling a context size of 32K right out of the box, enabled with Dynamic RoPE scaling.** ## 🧩 Configuration ```yaml models: - model: johnsnowlabs/JSL-MedLlama-3-8B-v2.0 # No parameters necessary for base model - model: aaditya/Llama3-OpenBioLLM-8B parameters: density: 0.53 weight: 0.5 merge_method: dare_ties base_model: johnsnowlabs/JSL-MedLlama-3-8B-v2.0 parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "abhinand/Llama-3-Galen-8B-32k-v1" messages = [{"role": "user", "content": "How long does it take to recover from COVID-19?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```