--- license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_keras_callback model-index: - name: aadhistii/tsel-finetune-bert-base-multilingual-cased-2k-formal-v2 results: [] --- # aadhistii/tsel-finetune-bert-base-multilingual-cased-2k-formal-v2 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0563 - Validation Loss: 1.0643 - Train Precision: 0.7141 - Train Recall: 0.7032 - Train F1: 0.7079 - Train Accuracy: 0.7234 - Epoch: 8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 940, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.9754 | 0.8980 | 0.7162 | 0.4951 | 0.4870 | 0.5824 | 0 | | 0.8058 | 0.7559 | 0.6366 | 0.6478 | 0.6383 | 0.6516 | 1 | | 0.5843 | 0.7703 | 0.6928 | 0.6737 | 0.6583 | 0.6809 | 2 | | 0.4311 | 0.7745 | 0.7411 | 0.7075 | 0.7187 | 0.7340 | 3 | | 0.2658 | 0.8264 | 0.6996 | 0.7133 | 0.7022 | 0.7154 | 4 | | 0.1542 | 0.9036 | 0.7245 | 0.7195 | 0.7215 | 0.7367 | 5 | | 0.1073 | 0.9961 | 0.7076 | 0.7278 | 0.7132 | 0.7261 | 6 | | 0.0712 | 1.0520 | 0.7069 | 0.6980 | 0.7004 | 0.7181 | 7 | | 0.0563 | 1.0643 | 0.7141 | 0.7032 | 0.7079 | 0.7234 | 8 | ### Framework versions - Transformers 4.42.3 - TensorFlow 2.15.0 - Datasets 2.20.0 - Tokenizers 0.19.1