--- tags: - generated_from_keras_callback model-index: - name: aadhistii/smsa-tsel-indobert-base-p1-formal results: [] --- # aadhistii/smsa-tsel-indobert-base-p1-formal This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0770 - Validation Loss: 0.7057 - Train Precision: 0.7275 - Train Recall: 0.7282 - Train F1: 0.7278 - Train Accuracy: 0.7282 - Epoch: 8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 245, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.0805 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 0 | | 0.0776 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 1 | | 0.0828 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 2 | | 0.0786 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 3 | | 0.0824 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 4 | | 0.0787 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 5 | | 0.0817 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 6 | | 0.0811 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 7 | | 0.0770 | 0.7057 | 0.7275 | 0.7282 | 0.7278 | 0.7282 | 8 | ### Framework versions - Transformers 4.42.3 - TensorFlow 2.15.0 - Datasets 2.20.0 - Tokenizers 0.19.1