--- base_model: BAAI/bge-small-en-v1.5 library_name: setfit metrics: - f1 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: [] inference: true model-index: - name: SetFit with BAAI/bge-small-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: f1 value: 0.49504950495049505 name: F1 --- # SetFit with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Evaluation ### Metrics | Label | F1 | |:--------|:-------| | **all** | 0.4950 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("Zlovoblachko/dimension3_setfit_BAAI") # Run inference preds = model("I loved the spiderman movie!") ``` ## Training Details ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (0.0003728764106052876, 0.0003728764106052876) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0007 | 1 | 0.3158 | - | | 0.0353 | 50 | 0.2596 | - | | 0.0706 | 100 | 0.2583 | - | | 0.1059 | 150 | 0.259 | - | | 0.1412 | 200 | 0.268 | - | | 0.1766 | 250 | 0.2594 | - | | 0.2119 | 300 | 0.2606 | - | | 0.2472 | 350 | 0.2628 | - | | 0.2825 | 400 | 0.2643 | - | | 0.3178 | 450 | 0.2594 | - | | 0.3531 | 500 | 0.2579 | - | | 0.3884 | 550 | 0.2632 | - | | 0.4237 | 600 | 0.2583 | - | | 0.4590 | 650 | 0.2575 | - | | 0.4944 | 700 | 0.2636 | - | | 0.5297 | 750 | 0.2579 | - | | 0.5650 | 800 | 0.2652 | - | | 0.6003 | 850 | 0.2599 | - | | 0.6356 | 900 | 0.2592 | - | | 0.6709 | 950 | 0.264 | - | | 0.7062 | 1000 | 0.2625 | - | | 0.7415 | 1050 | 0.2568 | - | | 0.7768 | 1100 | 0.2651 | - | | 0.8121 | 1150 | 0.2586 | - | | 0.8475 | 1200 | 0.2636 | - | | 0.8828 | 1250 | 0.2614 | - | | 0.9181 | 1300 | 0.2594 | - | | 0.9534 | 1350 | 0.2614 | - | | 0.9887 | 1400 | 0.2621 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.2.1 - Transformers: 4.44.2 - PyTorch: 2.5.0+cu121 - Datasets: 3.0.2 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```