import numpy as np import torch import torch.nn as nn from typing import Any, Optional, Tuple, Type class PromptEncoder(nn.Module): def __init__( self, embed_dim=256, image_embedding_size=1024, input_image_size=(1024, 1024), mask_in_chans=16, activation=nn.GELU ) -> None: super().__init__() """ Codes are partially from SAM: https://github.com/facebookresearch/segment-anything/blob/6fdee8f2727f4506cfbbe553e23b895e27956588/segment_anything/modeling/prompt_encoder.py. Arguments: embed_dim (int): The prompts' embedding dimension image_embedding_size (tuple(int, int)): The spatial size of the image embedding, as (H, W). input_image_size (int): The padded size of the image as input to the image encoder, as (H, W). mask_in_chans (int): The number of hidden channels used for encoding input masks. activation (nn.Module): The activation to use when encoding input masks. """ super().__init__() self.embed_dim = embed_dim self.input_image_size = input_image_size self.image_embedding_size = image_embedding_size self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)] self.point_embeddings = nn.ModuleList(point_embeddings) self.not_a_point_embed = nn.Embedding(1, embed_dim) self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1]) self.mask_downscaling = nn.Sequential( nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans // 4), activation(), nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans), activation(), nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), ) self.no_mask_embed = nn.Embedding(1, embed_dim) def get_dense_pe(self) -> torch.Tensor: """ Returns the positional encoding used to encode point prompts, applied to a dense set of points the shape of the image encoding. Returns: torch.Tensor: Positional encoding with shape 1x(embed_dim)x(embedding_h)x(embedding_w) """ return self.pe_layer(self.image_embedding_size).unsqueeze(0) def _embed_points( self, points: torch.Tensor, labels: torch.Tensor, pad: bool, ) -> torch.Tensor: """Embeds point prompts.""" points = points + 0.5 # Shift to center of pixel if pad: padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) points = torch.cat([points, padding_point], dim=1) labels = torch.cat([labels, padding_label], dim=1) point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) point_embedding[labels == -1] = 0.0 point_embedding[labels == -1] += self.not_a_point_embed.weight point_embedding[labels == 0] += self.point_embeddings[0].weight point_embedding[labels == 1] += self.point_embeddings[1].weight return point_embedding def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: """Embeds box prompts.""" boxes = boxes + 0.5 # Shift to center of pixel coords = boxes.reshape(-1, 2, 2) corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) corner_embedding[:, 0, :] += self.point_embeddings[2].weight corner_embedding[:, 1, :] += self.point_embeddings[3].weight return corner_embedding def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: """Embeds mask inputs.""" mask_embedding = self.mask_downscaling(masks) return mask_embedding def _get_batch_size( self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor], ) -> int: """ Gets the batch size of the output given the batch size of the input prompts. """ if points is not None: return points[0].shape[0] elif boxes is not None: return boxes.shape[0] elif masks is not None: return masks.shape[0] else: return 1 def _get_device(self) -> torch.device: return self.point_embeddings[0].weight.device def forward( self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: """ Embeds different types of prompts, returning both sparse and dense embeddings. Arguments: points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates and labels to embed. boxes (torch.Tensor or none): boxes to embed masks (torch.Tensor or none): masks to embed Returns: torch.Tensor: sparse embeddings for the points and boxes, with shape BxNx(embed_dim), where N is determined by the number of input points and boxes. torch.Tensor: dense embeddings for the masks, in the shape Bx(embed_dim)x(embed_H)x(embed_W) """ bs = self._get_batch_size(points, boxes, masks) sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) if points is not None: coords, labels = points point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) if boxes is not None: box_embeddings = self._embed_boxes(boxes) sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) if masks is not None: dense_embeddings = self._embed_masks(masks) else: dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] ) return sparse_embeddings, dense_embeddings class PositionEmbeddingRandom(nn.Module): """ Positional encoding using random spatial frequencies. """ def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: super().__init__() if scale is None or scale <= 0.0: scale = 1.0 self.register_buffer( "positional_encoding_gaussian_matrix", scale * torch.randn((2, num_pos_feats)), ) def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: """Positionally encode points that are normalized to [0,1].""" # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape coords = 2 * coords - 1 coords = coords @ self.positional_encoding_gaussian_matrix coords = 2 * np.pi * coords # outputs d_1 x ... x d_n x C shape return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) def forward(self, size: Tuple[int, int]) -> torch.Tensor: """Generate positional encoding for a grid of the specified size.""" h, w = size device: Any = self.positional_encoding_gaussian_matrix.device grid = torch.ones((h, w), device=device, dtype=torch.float32) y_embed = grid.cumsum(dim=0) - 0.5 x_embed = grid.cumsum(dim=1) - 0.5 y_embed = y_embed / h x_embed = x_embed / w pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) return pe.permute(2, 0, 1) # C x H x W def forward_with_coords( self, coords_input: torch.Tensor, image_size: Tuple[int, int] ) -> torch.Tensor: """Positionally encode points that are not normalized to [0,1].""" coords = coords_input.clone() coords[:, :, 0] = coords[:, :, 0] / image_size[1] coords[:, :, 1] = coords[:, :, 1] / image_size[0] return self._pe_encoding(coords.to(torch.float)) # B x N x C class LayerNorm2d(nn.Module): def __init__(self, num_channels: int, eps: float = 1e-6) -> None: super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, x: torch.Tensor) -> torch.Tensor: u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x