--- language: en datasets: - squad tags: - Question Generation widget: - text: " T5 Cheng fine-tuned T5 on SQuAD for question generation." example_title: "Example 1" - text: " SQuAD Cheng fine-tuned T5 on SQuAD dataset for question generation." example_title: "Example 2" - text: " thousands Transformers provides thousands of pre-trained models to perform tasks on different modalities such as text, vision, and audio." example_title: "Example 3" --- # T5-Base Fine-Tuned on SQuAD for Question Generation ### Model in Action: ```python import torch from transformers import T5Tokenizer, T5ForConditionalGeneration trained_model_path = 'ZhangCheng/T5-Base-Fine-Tuned-for-Question-Generation' trained_tokenizer_path = 'ZhangCheng/T5-Base-Fine-Tuned-for-Question-Generation' class QuestionGeneration: def __init__(self): self.model = T5ForConditionalGeneration.from_pretrained(trained_model_path) self.tokenizer = T5Tokenizer.from_pretrained(trained_tokenizer_path) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = self.model.to(self.device) self.model.eval() def generate(self, answer:str, context:str): input_text = ' %s %s ' % (answer, context) encoding = self.tokenizer.encode_plus( input_text, return_tensors='pt' ) input_ids = encoding['input_ids'].to(self.device) attention_mask = encoding['attention_mask'].to(self.device) outputs = self.model.generate( input_ids = input_ids, attention_mask = attention_mask ) question = self.tokenizer.decode( outputs[0], skip_special_tokens = True, clean_up_tokenization_spaces = True ) return {'question': question, 'answer': answer} if __name__ == "__main__": context = 'ZhangCheng fine-tuned T5 on SQuAD dataset for question generation.' answer = 'ZhangCheng' QG = QuestionGeneration() qa = QG.generate(answer, context) print(qa['question']) # Output: # Who fine-tuned T5 on SQuAD dataset for question generation? ```