FrugalDisinfoHunter / preprocessing.py
Zen0's picture
Upload 2 files
24ff08a verified
raw
history blame
10.2 kB
import re
import numpy as np
from typing import List, Dict, Tuple, Optional
from collections import Counter, defaultdict
import pandas as pd
from sklearn.utils import resample
import logging
from functools import lru_cache
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ClimateTextPreprocessor:
def __init__(self):
# Scientific terms with expanded categories
self.scientific_terms = {
'measurement_terms': {
'temperature', 'degree', 'celsius', 'fahrenheit', 'kelvin',
'ppm', 'concentration', 'level', 'rate', 'trend', 'average',
'increase', 'decrease', 'change', 'variation'
},
'climate_terms': {
'climate', 'weather', 'warming', 'cooling', 'atmosphere',
'greenhouse', 'carbon', 'dioxide', 'co2', 'methane', 'emission',
'pollution', 'temperature', 'environment', 'environmental'
},
'scientific_bodies': {
'ipcc', 'nasa', 'noaa', 'wmo', 'epa', 'met office',
'national academy', 'research', 'university', 'laboratory',
'institute', 'scientist', 'researcher', 'expert', 'study'
},
'earth_systems': {
'ocean', 'sea level', 'glacier', 'ice sheet', 'permafrost',
'arctic', 'antarctic', 'atmosphere', 'sea ice', 'temperature',
'ecosystem', 'biodiversity', 'forest', 'precipitation', 'drought'
}
}
# Compile regex patterns
self.patterns = self._compile_patterns()
# Initialize statistics
self.reset_stats()
def _compile_patterns(self) -> Dict[str, re.Pattern]:
"""Compile regex patterns for efficient processing"""
return {
'numbers': re.compile(r'\d+(?:\.\d+)?'),
'temperature': re.compile(r'\d+(?:\.\d+)?\s*(?:°[CF]|degrees?(?:\s+[CF])?|celsius|fahrenheit)'),
'year': re.compile(r'\b(?:19|20)\d{2}\b'),
'urls': re.compile(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'),
'special_chars': re.compile(r'[^a-zA-Z0-9\s]')
}
def reset_stats(self):
"""Reset statistics tracking"""
self.stats = {
'total_processed': 0,
'avg_length': 0,
'scientific_terms_frequency': defaultdict(Counter),
'errors': Counter()
}
@lru_cache(maxsize=1000)
def clean_text(self, text: str) -> str:
"""Basic text cleaning with caching"""
try:
# Convert to lowercase
text = text.lower()
# Standardize scientific notation
text = re.sub(r'co2\b', 'carbon dioxide', text)
text = re.sub(r'(\d+)f\b', r'\1 fahrenheit', text)
text = re.sub(r'(\d+)c\b', r'\1 celsius', text)
# Remove URLs
text = self.patterns['urls'].sub('', text)
# Standardize whitespace
text = ' '.join(text.split())
return text.strip()
except Exception as e:
logger.error(f"Error cleaning text: {str(e)}")
self.stats['errors']['cleaning'] += 1
return text
def extract_numerical_features(self, text: str) -> Dict:
"""Extract features related to numerical claims"""
try:
features = {}
# Find all numbers
numbers = self.patterns['numbers'].findall(text)
features['has_numbers'] = bool(numbers)
features['number_count'] = len(numbers)
# Temperature mentions
features['has_temperature'] = bool(self.patterns['temperature'].search(text))
# Year mentions
features['has_year'] = bool(self.patterns['year'].search(text))
return features
except Exception as e:
logger.error(f"Error extracting numerical features: {str(e)}")
self.stats['errors']['numerical_extraction'] += 1
return {'has_numbers': False, 'number_count': 0, 'has_temperature': False, 'has_year': False}
def extract_scientific_features(self, text: str) -> Dict:
"""Extract features related to scientific terms"""
try:
features = {}
text_lower = text.lower()
# Count terms in each category
for category, terms in self.scientific_terms.items():
found_terms = []
for term in terms:
if term in text_lower:
found_terms.append(term)
self.stats['scientific_terms_frequency'][category][term] += 1
features[f'{category}_count'] = len(found_terms)
features[f'{category}_terms'] = found_terms
return features
except Exception as e:
logger.error(f"Error extracting scientific features: {str(e)}")
self.stats['errors']['scientific_extraction'] += 1
return {
**{f'{cat}_count': 0 for cat in self.scientific_terms},
**{f'{cat}_terms': [] for cat in self.scientific_terms}
}
def extract_features(self, text: str) -> Dict:
"""Extract all features from text"""
try:
features = {
'original_length': len(text),
'cleaned_text': self.clean_text(text)
}
# Extract basic numerical and scientific features
features.update(self.extract_numerical_features(text))
features.update(self.extract_scientific_features(features['cleaned_text']))
# Calculate densities
words = features['cleaned_text'].split()
word_count = len(words) if words else 1
total_scientific_terms = sum(
features.get(f'{cat}_count', 0)
for cat in self.scientific_terms.keys()
)
features['scientific_density'] = total_scientific_terms / word_count
features['numerical_density'] = features['number_count'] / word_count
# Update statistics
self.stats['total_processed'] += 1
self.stats['avg_length'] = (
(self.stats['avg_length'] * (self.stats['total_processed'] - 1) + len(text))
/ self.stats['total_processed']
)
return features
except Exception as e:
logger.error(f"Error in feature extraction: {str(e)}")
self.stats['errors']['feature_extraction'] += 1
return self._get_default_features()
def _get_default_features(self) -> Dict:
"""Return default features for error cases"""
return {
'original_length': 0,
'cleaned_text': '',
'has_numbers': False,
'number_count': 0,
'has_temperature': False,
'has_year': False,
'scientific_density': 0.0,
'numerical_density': 0.0
}
def process_batch(self, texts: List[str], labels: Optional[List[str]] = None,
balance: bool = False) -> Tuple[List[Dict], Optional[List[str]]]:
"""Process a batch of texts and optionally their labels"""
try:
# Extract features for all texts
features_list = []
for text in texts:
try:
features = self.extract_features(text)
features_list.append(features)
except Exception as e:
logger.error(f"Error processing text: {str(e)}")
features_list.append(self._get_default_features())
# Balance dataset if requested and labels are provided
if balance and labels and len(set(labels)) > 1:
return self.balance_dataset(features_list, labels)
return features_list, labels
except Exception as e:
logger.error(f"Error in batch processing: {str(e)}")
self.stats['errors']['batch_processing'] += 1
return [self._get_default_features() for _ in texts], labels
def balance_dataset(self, features: List[Dict], labels: List[str]) -> Tuple[List[Dict], List[str]]:
"""Balance dataset using oversampling of minority classes"""
try:
df = pd.DataFrame({
'features': features,
'label': labels
})
# Get size of majority class
max_size = df['label'].value_counts().max()
# Oversample minority classes
balanced_dfs = []
for label in df['label'].unique():
label_df = df[df['label'] == label]
if len(label_df) < max_size:
resampled_df = resample(
label_df,
replace=True,
n_samples=max_size,
random_state=42
)
balanced_dfs.append(resampled_df)
else:
balanced_dfs.append(label_df)
balanced_df = pd.concat(balanced_dfs)
return balanced_df['features'].tolist(), balanced_df['label'].tolist()
except Exception as e:
logger.error(f"Error balancing dataset: {str(e)}")
self.stats['errors']['balancing'] += 1
return features, labels
def get_stats(self) -> Dict:
"""Return current preprocessing statistics"""
return self.stats