--- base_model: allenai/biomed_roberta_base tags: - medical transcriptions - healthcare model-index: - name: clinical_transcripts_roberta results: [] widget: - fill-mask: mask_token: prompt: "General endotracheal was induced without incident. Preoperative antibiotics were given for prophylaxis against surgical infection." --- # clinical_transcripts_roberta This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on [medical transcriptions dataset](https://www.kaggle.com/datasets/tboyle10/medicaltranscriptions). It achieves the following results on the evaluation set: - Loss: 1.0331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 100 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.405 | 0.51 | 100 | 1.2925 | | 1.316 | 1.01 | 200 | 1.2107 | | 1.2781 | 1.52 | 300 | 1.1704 | | 1.2911 | 2.02 | 400 | 1.1745 | | 1.2241 | 2.53 | 500 | 1.1730 | | 1.2063 | 3.03 | 600 | 1.1248 | | 1.174 | 3.54 | 700 | 1.1416 | | 1.1588 | 4.04 | 800 | 1.1495 | | 1.1513 | 4.55 | 900 | 1.1145 | | 1.1541 | 5.05 | 1000 | 1.1402 | | 1.1266 | 5.56 | 1100 | 1.1156 | | 1.1205 | 6.06 | 1200 | 1.1075 | | 1.1141 | 6.57 | 1300 | 1.1157 | | 1.0956 | 7.07 | 1400 | 1.1047 | | 1.0809 | 7.58 | 1500 | 1.0921 | | 1.0755 | 8.08 | 1600 | 1.0891 | | 1.044 | 8.59 | 1700 | 1.0758 | | 1.1103 | 9.09 | 1800 | 1.0881 | | 1.0578 | 9.6 | 1900 | 1.0578 | | 1.0462 | 10.1 | 2000 | 1.1043 | | 1.0302 | 10.61 | 2100 | 1.0787 | | 1.0236 | 11.11 | 2200 | 1.0841 | | 1.0371 | 11.62 | 2300 | 1.0904 | | 1.0178 | 12.12 | 2400 | 1.0593 | | 0.999 | 12.63 | 2500 | 1.0661 | | 0.9867 | 13.13 | 2600 | 1.0670 | | 0.9986 | 13.64 | 2700 | 1.0470 | | 0.9867 | 14.14 | 2800 | 1.0347 | | 0.9848 | 14.65 | 2900 | 1.0274 | | 0.9627 | 15.15 | 3000 | 1.0550 | | 0.9659 | 15.66 | 3100 | 1.0499 | | 0.9743 | 16.16 | 3200 | 1.0419 | | 0.9507 | 16.67 | 3300 | 1.0679 | | 0.941 | 17.17 | 3400 | 1.0142 | | 0.9548 | 17.68 | 3500 | 1.0422 | | 0.9378 | 18.18 | 3600 | 1.0471 | | 0.9339 | 18.69 | 3700 | 1.0473 | | 0.9195 | 19.19 | 3800 | 1.0248 | | 0.9254 | 19.7 | 3900 | 1.0235 | | 0.9393 | 20.2 | 4000 | 1.0331 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0