# Copyright (c) Open-MMLab. All rights reserved. import os import os.path as osp import tempfile import mmcv import numpy as np import pytest import torch from mmdet.core import visualization as vis def test_color(): assert vis.color_val_matplotlib(mmcv.Color.blue) == (0., 0., 1.) assert vis.color_val_matplotlib('green') == (0., 1., 0.) assert vis.color_val_matplotlib((1, 2, 3)) == (3 / 255, 2 / 255, 1 / 255) assert vis.color_val_matplotlib(100) == (100 / 255, 100 / 255, 100 / 255) assert vis.color_val_matplotlib(np.zeros(3, dtype=np.int)) == (0., 0., 0.) # forbid white color with pytest.raises(TypeError): vis.color_val_matplotlib([255, 255, 255]) # forbid float with pytest.raises(TypeError): vis.color_val_matplotlib(1.0) # overflowed with pytest.raises(AssertionError): vis.color_val_matplotlib((0, 0, 500)) def test_imshow_det_bboxes(): tmp_filename = osp.join(tempfile.gettempdir(), 'det_bboxes_image', 'image.jpg') image = np.ones((10, 10, 3), np.uint8) bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) label = np.array([0, 1]) out_image = vis.imshow_det_bboxes( image, bbox, label, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) assert image.shape == out_image.shape assert not np.allclose(image, out_image) os.remove(tmp_filename) # test grayscale images image = np.ones((10, 10), np.uint8) bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) label = np.array([0, 1]) out_image = vis.imshow_det_bboxes( image, bbox, label, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) assert image.shape == out_image.shape[:2] os.remove(tmp_filename) # test shaped (0,) image = np.ones((10, 10, 3), np.uint8) bbox = np.ones((0, 4)) label = np.ones((0, )) vis.imshow_det_bboxes( image, bbox, label, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) os.remove(tmp_filename) # test mask image = np.ones((10, 10, 3), np.uint8) bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) label = np.array([0, 1]) segms = np.random.random((2, 10, 10)) > 0.5 segms = np.array(segms, np.int32) vis.imshow_det_bboxes( image, bbox, label, segms, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) os.remove(tmp_filename) # test tensor mask type error with pytest.raises(AttributeError): segms = torch.tensor(segms) vis.imshow_det_bboxes(image, bbox, label, segms, show=False) def test_imshow_gt_det_bboxes(): tmp_filename = osp.join(tempfile.gettempdir(), 'det_bboxes_image', 'image.jpg') image = np.ones((10, 10, 3), np.uint8) bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) label = np.array([0, 1]) annotation = dict(gt_bboxes=bbox, gt_labels=label) det_result = np.array([[2, 1, 3, 3, 0], [3, 4, 6, 6, 1]]) result = [det_result] out_image = vis.imshow_gt_det_bboxes( image, annotation, result, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) assert image.shape == out_image.shape assert not np.allclose(image, out_image) os.remove(tmp_filename) # test grayscale images image = np.ones((10, 10), np.uint8) bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]]) label = np.array([0, 1]) annotation = dict(gt_bboxes=bbox, gt_labels=label) det_result = np.array([[2, 1, 3, 3, 0], [3, 4, 6, 6, 1]]) result = [det_result] vis.imshow_gt_det_bboxes( image, annotation, result, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) os.remove(tmp_filename) # test numpy mask gt_mask = np.ones((2, 10, 10)) annotation['gt_masks'] = gt_mask vis.imshow_gt_det_bboxes( image, annotation, result, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) os.remove(tmp_filename) # test tensor mask gt_mask = torch.ones((2, 10, 10)) annotation['gt_masks'] = gt_mask vis.imshow_gt_det_bboxes( image, annotation, result, out_file=tmp_filename, show=False) assert osp.isfile(tmp_filename) os.remove(tmp_filename) # test unsupported type annotation['gt_masks'] = [] with pytest.raises(TypeError): vis.imshow_gt_det_bboxes(image, annotation, result, show=False)