"""Tests the Assigner objects. CommandLine: pytest tests/test_utils/test_assigner.py xdoctest tests/test_utils/test_assigner.py zero """ import torch from mmdet.core.bbox.assigners import (ApproxMaxIoUAssigner, CenterRegionAssigner, HungarianAssigner, MaxIoUAssigner, PointAssigner) def test_max_iou_assigner(): self = MaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.FloatTensor([ [0, 0, 10, 10], [10, 10, 20, 20], [5, 5, 15, 15], [32, 32, 38, 42], ]) gt_bboxes = torch.FloatTensor([ [0, 0, 10, 9], [0, 10, 10, 19], ]) gt_labels = torch.LongTensor([2, 3]) assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels) assert len(assign_result.gt_inds) == 4 assert len(assign_result.labels) == 4 expected_gt_inds = torch.LongTensor([1, 0, 2, 0]) assert torch.all(assign_result.gt_inds == expected_gt_inds) def test_max_iou_assigner_with_ignore(): self = MaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ignore_iof_thr=0.5, ignore_wrt_candidates=False, ) bboxes = torch.FloatTensor([ [0, 0, 10, 10], [10, 10, 20, 20], [5, 5, 15, 15], [30, 32, 40, 42], ]) gt_bboxes = torch.FloatTensor([ [0, 0, 10, 9], [0, 10, 10, 19], ]) gt_bboxes_ignore = torch.Tensor([ [30, 30, 40, 40], ]) assign_result = self.assign( bboxes, gt_bboxes, gt_bboxes_ignore=gt_bboxes_ignore) expected_gt_inds = torch.LongTensor([1, 0, 2, -1]) assert torch.all(assign_result.gt_inds == expected_gt_inds) def test_max_iou_assigner_with_empty_gt(): """Test corner case where an image might have no true detections.""" self = MaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.FloatTensor([ [0, 0, 10, 10], [10, 10, 20, 20], [5, 5, 15, 15], [32, 32, 38, 42], ]) gt_bboxes = torch.empty(0, 4) assign_result = self.assign(bboxes, gt_bboxes) expected_gt_inds = torch.LongTensor([0, 0, 0, 0]) assert torch.all(assign_result.gt_inds == expected_gt_inds) def test_max_iou_assigner_with_empty_boxes(): """Test corner case where a network might predict no boxes.""" self = MaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.empty((0, 4)) gt_bboxes = torch.FloatTensor([ [0, 0, 10, 9], [0, 10, 10, 19], ]) gt_labels = torch.LongTensor([2, 3]) # Test with gt_labels assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels) assert len(assign_result.gt_inds) == 0 assert tuple(assign_result.labels.shape) == (0, ) # Test without gt_labels assign_result = self.assign(bboxes, gt_bboxes, gt_labels=None) assert len(assign_result.gt_inds) == 0 assert assign_result.labels is None def test_max_iou_assigner_with_empty_boxes_and_ignore(): """Test corner case where a network might predict no boxes and ignore_iof_thr is on.""" self = MaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ignore_iof_thr=0.5, ) bboxes = torch.empty((0, 4)) gt_bboxes = torch.FloatTensor([ [0, 0, 10, 9], [0, 10, 10, 19], ]) gt_bboxes_ignore = torch.Tensor([ [30, 30, 40, 40], ]) gt_labels = torch.LongTensor([2, 3]) # Test with gt_labels assign_result = self.assign( bboxes, gt_bboxes, gt_labels=gt_labels, gt_bboxes_ignore=gt_bboxes_ignore) assert len(assign_result.gt_inds) == 0 assert tuple(assign_result.labels.shape) == (0, ) # Test without gt_labels assign_result = self.assign( bboxes, gt_bboxes, gt_labels=None, gt_bboxes_ignore=gt_bboxes_ignore) assert len(assign_result.gt_inds) == 0 assert assign_result.labels is None def test_max_iou_assigner_with_empty_boxes_and_gt(): """Test corner case where a network might predict no boxes and no gt.""" self = MaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.empty((0, 4)) gt_bboxes = torch.empty((0, 4)) assign_result = self.assign(bboxes, gt_bboxes) assert len(assign_result.gt_inds) == 0 def test_point_assigner(): self = PointAssigner() points = torch.FloatTensor([ # [x, y, stride] [0, 0, 1], [10, 10, 1], [5, 5, 1], [32, 32, 1], ]) gt_bboxes = torch.FloatTensor([ [0, 0, 10, 9], [0, 10, 10, 19], ]) assign_result = self.assign(points, gt_bboxes) expected_gt_inds = torch.LongTensor([1, 2, 1, 0]) assert torch.all(assign_result.gt_inds == expected_gt_inds) def test_point_assigner_with_empty_gt(): """Test corner case where an image might have no true detections.""" self = PointAssigner() points = torch.FloatTensor([ # [x, y, stride] [0, 0, 1], [10, 10, 1], [5, 5, 1], [32, 32, 1], ]) gt_bboxes = torch.FloatTensor([]) assign_result = self.assign(points, gt_bboxes) expected_gt_inds = torch.LongTensor([0, 0, 0, 0]) assert torch.all(assign_result.gt_inds == expected_gt_inds) def test_point_assigner_with_empty_boxes_and_gt(): """Test corner case where an image might predict no points and no gt.""" self = PointAssigner() points = torch.FloatTensor([]) gt_bboxes = torch.FloatTensor([]) assign_result = self.assign(points, gt_bboxes) assert len(assign_result.gt_inds) == 0 def test_approx_iou_assigner(): self = ApproxMaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.FloatTensor([ [0, 0, 10, 10], [10, 10, 20, 20], [5, 5, 15, 15], [32, 32, 38, 42], ]) gt_bboxes = torch.FloatTensor([ [0, 0, 10, 9], [0, 10, 10, 19], ]) approxs_per_octave = 1 approxs = bboxes squares = bboxes assign_result = self.assign(approxs, squares, approxs_per_octave, gt_bboxes) expected_gt_inds = torch.LongTensor([1, 0, 2, 0]) assert torch.all(assign_result.gt_inds == expected_gt_inds) def test_approx_iou_assigner_with_empty_gt(): """Test corner case where an image might have no true detections.""" self = ApproxMaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.FloatTensor([ [0, 0, 10, 10], [10, 10, 20, 20], [5, 5, 15, 15], [32, 32, 38, 42], ]) gt_bboxes = torch.FloatTensor([]) approxs_per_octave = 1 approxs = bboxes squares = bboxes assign_result = self.assign(approxs, squares, approxs_per_octave, gt_bboxes) expected_gt_inds = torch.LongTensor([0, 0, 0, 0]) assert torch.all(assign_result.gt_inds == expected_gt_inds) def test_approx_iou_assigner_with_empty_boxes(): """Test corner case where an network might predict no boxes.""" self = ApproxMaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.empty((0, 4)) gt_bboxes = torch.FloatTensor([ [0, 0, 10, 9], [0, 10, 10, 19], ]) approxs_per_octave = 1 approxs = bboxes squares = bboxes assign_result = self.assign(approxs, squares, approxs_per_octave, gt_bboxes) assert len(assign_result.gt_inds) == 0 def test_approx_iou_assigner_with_empty_boxes_and_gt(): """Test corner case where an network might predict no boxes and no gt.""" self = ApproxMaxIoUAssigner( pos_iou_thr=0.5, neg_iou_thr=0.5, ) bboxes = torch.empty((0, 4)) gt_bboxes = torch.empty((0, 4)) approxs_per_octave = 1 approxs = bboxes squares = bboxes assign_result = self.assign(approxs, squares, approxs_per_octave, gt_bboxes) assert len(assign_result.gt_inds) == 0 def test_random_assign_result(): """Test random instantiation of assign result to catch corner cases.""" from mmdet.core.bbox.assigners.assign_result import AssignResult AssignResult.random() AssignResult.random(num_gts=0, num_preds=0) AssignResult.random(num_gts=0, num_preds=3) AssignResult.random(num_gts=3, num_preds=3) AssignResult.random(num_gts=0, num_preds=3) AssignResult.random(num_gts=7, num_preds=7) AssignResult.random(num_gts=7, num_preds=64) AssignResult.random(num_gts=24, num_preds=3) def test_center_region_assigner(): self = CenterRegionAssigner(pos_scale=0.3, neg_scale=1) bboxes = torch.FloatTensor([[0, 0, 10, 10], [10, 10, 20, 20], [8, 8, 9, 9]]) gt_bboxes = torch.FloatTensor([ [0, 0, 11, 11], # match bboxes[0] [10, 10, 20, 20], # match bboxes[1] [4.5, 4.5, 5.5, 5.5], # match bboxes[0] but area is too small [0, 0, 10, 10], # match bboxes[1] and has a smaller area than gt[0] ]) gt_labels = torch.LongTensor([2, 3, 4, 5]) assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels) assert len(assign_result.gt_inds) == 3 assert len(assign_result.labels) == 3 expected_gt_inds = torch.LongTensor([4, 2, 0]) assert torch.all(assign_result.gt_inds == expected_gt_inds) shadowed_labels = assign_result.get_extra_property('shadowed_labels') # [8, 8, 9, 9] in the shadowed region of [0, 0, 11, 11] (label: 2) assert torch.any(shadowed_labels == torch.LongTensor([[2, 2]])) # [8, 8, 9, 9] in the shadowed region of [0, 0, 10, 10] (label: 5) assert torch.any(shadowed_labels == torch.LongTensor([[2, 5]])) # [0, 0, 10, 10] is already assigned to [4.5, 4.5, 5.5, 5.5]. # Therefore, [0, 0, 11, 11] (label: 2) is shadowed assert torch.any(shadowed_labels == torch.LongTensor([[0, 2]])) def test_center_region_assigner_with_ignore(): self = CenterRegionAssigner( pos_scale=0.5, neg_scale=1, ) bboxes = torch.FloatTensor([ [0, 0, 10, 10], [10, 10, 20, 20], ]) gt_bboxes = torch.FloatTensor([ [0, 0, 10, 10], # match bboxes[0] [10, 10, 20, 20], # match bboxes[1] ]) gt_bboxes_ignore = torch.FloatTensor([ [0, 0, 10, 10], # match bboxes[0] ]) gt_labels = torch.LongTensor([1, 2]) assign_result = self.assign( bboxes, gt_bboxes, gt_bboxes_ignore=gt_bboxes_ignore, gt_labels=gt_labels) assert len(assign_result.gt_inds) == 2 assert len(assign_result.labels) == 2 expected_gt_inds = torch.LongTensor([-1, 2]) assert torch.all(assign_result.gt_inds == expected_gt_inds) def test_center_region_assigner_with_empty_bboxes(): self = CenterRegionAssigner( pos_scale=0.5, neg_scale=1, ) bboxes = torch.empty((0, 4)).float() gt_bboxes = torch.FloatTensor([ [0, 0, 10, 10], # match bboxes[0] [10, 10, 20, 20], # match bboxes[1] ]) gt_labels = torch.LongTensor([1, 2]) assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels) assert assign_result.gt_inds is None or assign_result.gt_inds.numel() == 0 assert assign_result.labels is None or assign_result.labels.numel() == 0 def test_center_region_assigner_with_empty_gts(): self = CenterRegionAssigner( pos_scale=0.5, neg_scale=1, ) bboxes = torch.FloatTensor([ [0, 0, 10, 10], [10, 10, 20, 20], ]) gt_bboxes = torch.empty((0, 4)).float() gt_labels = torch.empty((0, )).long() assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels) assert len(assign_result.gt_inds) == 2 expected_gt_inds = torch.LongTensor([0, 0]) assert torch.all(assign_result.gt_inds == expected_gt_inds) def test_hungarian_match_assigner(): self = HungarianAssigner() assert self.iou_cost.iou_mode == 'giou' # test no gt bboxes bbox_pred = torch.rand((10, 4)) cls_pred = torch.rand((10, 81)) gt_bboxes = torch.empty((0, 4)).float() gt_labels = torch.empty((0, )).long() img_meta = dict(img_shape=(10, 8, 3)) assign_result = self.assign(bbox_pred, cls_pred, gt_bboxes, gt_labels, img_meta) assert torch.all(assign_result.gt_inds == 0) assert torch.all(assign_result.labels == -1) # test with gt bboxes gt_bboxes = torch.FloatTensor([[0, 0, 5, 7], [3, 5, 7, 8]]) gt_labels = torch.LongTensor([1, 20]) assign_result = self.assign(bbox_pred, cls_pred, gt_bboxes, gt_labels, img_meta) assert torch.all(assign_result.gt_inds > -1) assert (assign_result.gt_inds > 0).sum() == gt_bboxes.size(0) assert (assign_result.labels > -1).sum() == gt_bboxes.size(0) # test iou mode self = HungarianAssigner( iou_cost=dict(type='IoUCost', iou_mode='iou', weight=1.0)) assert self.iou_cost.iou_mode == 'iou' assign_result = self.assign(bbox_pred, cls_pred, gt_bboxes, gt_labels, img_meta) assert torch.all(assign_result.gt_inds > -1) assert (assign_result.gt_inds > 0).sum() == gt_bboxes.size(0) assert (assign_result.labels > -1).sum() == gt_bboxes.size(0) # test focal loss mode self = HungarianAssigner( iou_cost=dict(type='IoUCost', iou_mode='giou', weight=1.0), cls_cost=dict(type='FocalLossCost', weight=1.)) assert self.iou_cost.iou_mode == 'giou' assign_result = self.assign(bbox_pred, cls_pred, gt_bboxes, gt_labels, img_meta) assert torch.all(assign_result.gt_inds > -1) assert (assign_result.gt_inds > 0).sum() == gt_bboxes.size(0) assert (assign_result.labels > -1).sum() == gt_bboxes.size(0)