"""pytest tests/test_forward.py.""" import copy from os.path import dirname, exists, join import numpy as np import pytest import torch def _get_config_directory(): """Find the predefined detector config directory.""" try: # Assume we are running in the source mmdetection repo repo_dpath = dirname(dirname(dirname(__file__))) except NameError: # For IPython development when this __file__ is not defined import mmdet repo_dpath = dirname(dirname(mmdet.__file__)) config_dpath = join(repo_dpath, 'configs') if not exists(config_dpath): raise Exception('Cannot find config path') return config_dpath def _get_config_module(fname): """Load a configuration as a python module.""" from mmcv import Config config_dpath = _get_config_directory() config_fpath = join(config_dpath, fname) config_mod = Config.fromfile(config_fpath) return config_mod def _get_detector_cfg(fname): """Grab configs necessary to create a detector. These are deep copied to allow for safe modification of parameters without influencing other tests. """ config = _get_config_module(fname) model = copy.deepcopy(config.model) return model def test_sparse_rcnn_forward(): config_path = 'sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py' model = _get_detector_cfg(config_path) model['pretrained'] = None from mmdet.models import build_detector detector = build_detector(model) input_shape = (1, 3, 550, 550) mm_inputs = _demo_mm_inputs(input_shape, num_items=[5]) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # Test forward train with non-empty truth batch detector = detector imgs = imgs detector.train() gt_bboxes = mm_inputs['gt_bboxes'] gt_bboxes = [item for item in gt_bboxes] gt_labels = mm_inputs['gt_labels'] gt_labels = [item for item in gt_labels] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 detector.forward_dummy(imgs) # Test forward train with an empty truth batch mm_inputs = _demo_mm_inputs(input_shape, num_items=[0]) imgs = mm_inputs.pop('imgs') imgs = imgs img_metas = mm_inputs.pop('img_metas') gt_bboxes = mm_inputs['gt_bboxes'] gt_bboxes = [item for item in gt_bboxes] gt_labels = mm_inputs['gt_labels'] gt_labels = [item for item in gt_labels] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 # Test forward test detector.eval() with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], rescale=True, return_loss=False) batch_results.append(result) def test_rpn_forward(): model = _get_detector_cfg('rpn/rpn_r50_fpn_1x_coco.py') model['pretrained'] = None from mmdet.models import build_detector detector = build_detector(model) input_shape = (1, 3, 224, 224) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # Test forward train gt_bboxes = mm_inputs['gt_bboxes'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], return_loss=False) batch_results.append(result) @pytest.mark.parametrize( 'cfg_file', [ 'retinanet/retinanet_r50_fpn_1x_coco.py', 'guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py', 'ghm/retinanet_ghm_r50_fpn_1x_coco.py', 'fcos/fcos_center_r50_caffe_fpn_gn-head_1x_coco.py', 'foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py', # 'free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py', # 'atss/atss_r50_fpn_1x_coco.py', # not ready for topk 'reppoints/reppoints_moment_r50_fpn_1x_coco.py', 'yolo/yolov3_d53_mstrain-608_273e_coco.py' ]) def test_single_stage_forward_gpu(cfg_file): if not torch.cuda.is_available(): import pytest pytest.skip('test requires GPU and torch+cuda') model = _get_detector_cfg(cfg_file) model['pretrained'] = None from mmdet.models import build_detector detector = build_detector(model) input_shape = (2, 3, 224, 224) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') detector = detector.cuda() imgs = imgs.cuda() # Test forward train gt_bboxes = [b.cuda() for b in mm_inputs['gt_bboxes']] gt_labels = [g.cuda() for g in mm_inputs['gt_labels']] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], return_loss=False) batch_results.append(result) def test_faster_rcnn_ohem_forward(): model = _get_detector_cfg( 'faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py') model['pretrained'] = None from mmdet.models import build_detector detector = build_detector(model) input_shape = (1, 3, 256, 256) # Test forward train with a non-empty truth batch mm_inputs = _demo_mm_inputs(input_shape, num_items=[10]) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 # Test forward train with an empty truth batch mm_inputs = _demo_mm_inputs(input_shape, num_items=[0]) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 @pytest.mark.parametrize('cfg_file', [ 'cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py', 'mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py', 'grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py', 'ms_rcnn/ms_rcnn_r50_fpn_1x_coco.py', 'htc/htc_r50_fpn_1x_coco.py', 'scnet/scnet_r50_fpn_20e_coco.py', ]) def test_two_stage_forward(cfg_file): models_with_semantic = [ 'htc/htc_r50_fpn_1x_coco.py', 'scnet/scnet_r50_fpn_20e_coco.py', ] if cfg_file in models_with_semantic: with_semantic = True else: with_semantic = False model = _get_detector_cfg(cfg_file) model['pretrained'] = None from mmdet.models import build_detector detector = build_detector(model) input_shape = (1, 3, 256, 256) # Test forward train with a non-empty truth batch mm_inputs = _demo_mm_inputs( input_shape, num_items=[10], with_semantic=with_semantic) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') losses = detector.forward(imgs, img_metas, return_loss=True, **mm_inputs) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) loss.requires_grad_(True) assert float(loss.item()) > 0 loss.backward() # Test forward train with an empty truth batch mm_inputs = _demo_mm_inputs( input_shape, num_items=[0], with_semantic=with_semantic) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') losses = detector.forward(imgs, img_metas, return_loss=True, **mm_inputs) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) loss.requires_grad_(True) assert float(loss.item()) > 0 loss.backward() # Test forward test with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], return_loss=False) batch_results.append(result) @pytest.mark.parametrize( 'cfg_file', ['ghm/retinanet_ghm_r50_fpn_1x_coco.py', 'ssd/ssd300_coco.py']) def test_single_stage_forward_cpu(cfg_file): model = _get_detector_cfg(cfg_file) model['pretrained'] = None from mmdet.models import build_detector detector = build_detector(model) input_shape = (1, 3, 300, 300) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # Test forward train gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) # Test forward test with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], return_loss=False) batch_results.append(result) def _demo_mm_inputs(input_shape=(1, 3, 300, 300), num_items=None, num_classes=10, with_semantic=False): # yapf: disable """Create a superset of inputs needed to run test or train batches. Args: input_shape (tuple): input batch dimensions num_items (None | List[int]): specifies the number of boxes in each batch item num_classes (int): number of different labels a box might have """ from mmdet.core import BitmapMasks (N, C, H, W) = input_shape rng = np.random.RandomState(0) imgs = rng.rand(*input_shape) img_metas = [{ 'img_shape': (H, W, C), 'ori_shape': (H, W, C), 'pad_shape': (H, W, C), 'filename': '.png', 'scale_factor': 1.0, 'flip': False, 'flip_direction': None, } for _ in range(N)] gt_bboxes = [] gt_labels = [] gt_masks = [] for batch_idx in range(N): if num_items is None: num_boxes = rng.randint(1, 10) else: num_boxes = num_items[batch_idx] cx, cy, bw, bh = rng.rand(num_boxes, 4).T tl_x = ((cx * W) - (W * bw / 2)).clip(0, W) tl_y = ((cy * H) - (H * bh / 2)).clip(0, H) br_x = ((cx * W) + (W * bw / 2)).clip(0, W) br_y = ((cy * H) + (H * bh / 2)).clip(0, H) boxes = np.vstack([tl_x, tl_y, br_x, br_y]).T class_idxs = rng.randint(1, num_classes, size=num_boxes) gt_bboxes.append(torch.FloatTensor(boxes)) gt_labels.append(torch.LongTensor(class_idxs)) mask = np.random.randint(0, 2, (len(boxes), H, W), dtype=np.uint8) gt_masks.append(BitmapMasks(mask, H, W)) mm_inputs = { 'imgs': torch.FloatTensor(imgs).requires_grad_(True), 'img_metas': img_metas, 'gt_bboxes': gt_bboxes, 'gt_labels': gt_labels, 'gt_bboxes_ignore': None, 'gt_masks': gt_masks, } if with_semantic: # assume gt_semantic_seg using scale 1/8 of the img gt_semantic_seg = np.random.randint( 0, num_classes, (1, 1, H // 8, W // 8), dtype=np.uint8) mm_inputs.update( {'gt_semantic_seg': torch.ByteTensor(gt_semantic_seg)}) return mm_inputs def test_yolact_forward(): model = _get_detector_cfg('yolact/yolact_r50_1x8_coco.py') model['pretrained'] = None from mmdet.models import build_detector detector = build_detector(model) input_shape = (1, 3, 100, 100) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # Test forward train detector.train() gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] gt_masks = mm_inputs['gt_masks'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, gt_masks=gt_masks, return_loss=True) assert isinstance(losses, dict) # Test forward test detector.eval() with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], rescale=True, return_loss=False) batch_results.append(result) def test_detr_forward(): model = _get_detector_cfg('detr/detr_r50_8x2_150e_coco.py') model['pretrained'] = None from mmdet.models import build_detector detector = build_detector(model) input_shape = (1, 3, 100, 100) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # Test forward train with non-empty truth batch detector.train() gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 # Test forward train with an empty truth batch mm_inputs = _demo_mm_inputs(input_shape, num_items=[0]) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 # Test forward test detector.eval() with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], rescale=True, return_loss=False) batch_results.append(result) def test_kd_single_stage_forward(): model = _get_detector_cfg('ld/ld_r18_gflv1_r101_fpn_coco_1x.py') model['pretrained'] = None from mmdet.models import build_detector detector = build_detector(model) input_shape = (1, 3, 100, 100) mm_inputs = _demo_mm_inputs(input_shape) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') # Test forward train with non-empty truth batch detector.train() gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 # Test forward train with an empty truth batch mm_inputs = _demo_mm_inputs(input_shape, num_items=[0]) imgs = mm_inputs.pop('imgs') img_metas = mm_inputs.pop('img_metas') gt_bboxes = mm_inputs['gt_bboxes'] gt_labels = mm_inputs['gt_labels'] losses = detector.forward( imgs, img_metas, gt_bboxes=gt_bboxes, gt_labels=gt_labels, return_loss=True) assert isinstance(losses, dict) loss, _ = detector._parse_losses(losses) assert float(loss.item()) > 0 # Test forward test detector.eval() with torch.no_grad(): img_list = [g[None, :] for g in imgs] batch_results = [] for one_img, one_meta in zip(img_list, img_metas): result = detector.forward([one_img], [[one_meta]], rescale=True, return_loss=False) batch_results.append(result) def test_inference_detector(): from mmdet.apis import inference_detector from mmdet.models import build_detector from mmcv import ConfigDict # small RetinaNet num_class = 3 model_dict = dict( type='RetinaNet', pretrained=None, backbone=dict( type='ResNet', depth=18, num_stages=4, out_indices=(3, ), norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='pytorch'), neck=None, bbox_head=dict( type='RetinaHead', num_classes=num_class, in_channels=512, stacked_convs=1, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5], strides=[32]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), ), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)) rng = np.random.RandomState(0) img1 = rng.rand(100, 100, 3) img2 = rng.rand(100, 100, 3) model = build_detector(ConfigDict(model_dict)) config = _get_config_module('retinanet/retinanet_r50_fpn_1x_coco.py') model.cfg = config # test single image result = inference_detector(model, img1) assert len(result) == num_class # test multiple image result = inference_detector(model, [img1, img2]) assert len(result) == 2 and len(result[0]) == num_class