import pytest import torch from mmcv import assert_params_all_zeros from mmcv.ops import DeformConv2dPack from torch.nn.modules import AvgPool2d, GroupNorm from torch.nn.modules.batchnorm import _BatchNorm from mmdet.models.backbones import ResNet, ResNetV1d from mmdet.models.backbones.resnet import BasicBlock, Bottleneck from mmdet.models.utils import ResLayer, SimplifiedBasicBlock from .utils import check_norm_state, is_block, is_norm def test_resnet_basic_block(): with pytest.raises(AssertionError): # Not implemented yet. dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False) BasicBlock(64, 64, dcn=dcn) with pytest.raises(AssertionError): # Not implemented yet. plugins = [ dict( cfg=dict(type='ContextBlock', ratio=1. / 16), position='after_conv3') ] BasicBlock(64, 64, plugins=plugins) with pytest.raises(AssertionError): # Not implemented yet plugins = [ dict( cfg=dict( type='GeneralizedAttention', spatial_range=-1, num_heads=8, attention_type='0010', kv_stride=2), position='after_conv2') ] BasicBlock(64, 64, plugins=plugins) # test BasicBlock structure and forward block = BasicBlock(64, 64) assert block.conv1.in_channels == 64 assert block.conv1.out_channels == 64 assert block.conv1.kernel_size == (3, 3) assert block.conv2.in_channels == 64 assert block.conv2.out_channels == 64 assert block.conv2.kernel_size == (3, 3) x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) # Test BasicBlock with checkpoint forward block = BasicBlock(64, 64, with_cp=True) assert block.with_cp x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) def test_resnet_bottleneck(): with pytest.raises(AssertionError): # Style must be in ['pytorch', 'caffe'] Bottleneck(64, 64, style='tensorflow') with pytest.raises(AssertionError): # Allowed positions are 'after_conv1', 'after_conv2', 'after_conv3' plugins = [ dict( cfg=dict(type='ContextBlock', ratio=1. / 16), position='after_conv4') ] Bottleneck(64, 16, plugins=plugins) with pytest.raises(AssertionError): # Need to specify different postfix to avoid duplicate plugin name plugins = [ dict( cfg=dict(type='ContextBlock', ratio=1. / 16), position='after_conv3'), dict( cfg=dict(type='ContextBlock', ratio=1. / 16), position='after_conv3') ] Bottleneck(64, 16, plugins=plugins) with pytest.raises(KeyError): # Plugin type is not supported plugins = [dict(cfg=dict(type='WrongPlugin'), position='after_conv3')] Bottleneck(64, 16, plugins=plugins) # Test Bottleneck with checkpoint forward block = Bottleneck(64, 16, with_cp=True) assert block.with_cp x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) # Test Bottleneck style block = Bottleneck(64, 64, stride=2, style='pytorch') assert block.conv1.stride == (1, 1) assert block.conv2.stride == (2, 2) block = Bottleneck(64, 64, stride=2, style='caffe') assert block.conv1.stride == (2, 2) assert block.conv2.stride == (1, 1) # Test Bottleneck DCN dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False) with pytest.raises(AssertionError): Bottleneck(64, 64, dcn=dcn, conv_cfg=dict(type='Conv')) block = Bottleneck(64, 64, dcn=dcn) assert isinstance(block.conv2, DeformConv2dPack) # Test Bottleneck forward block = Bottleneck(64, 16) x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) # Test Bottleneck with 1 ContextBlock after conv3 plugins = [ dict( cfg=dict(type='ContextBlock', ratio=1. / 16), position='after_conv3') ] block = Bottleneck(64, 16, plugins=plugins) assert block.context_block.in_channels == 64 x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) # Test Bottleneck with 1 GeneralizedAttention after conv2 plugins = [ dict( cfg=dict( type='GeneralizedAttention', spatial_range=-1, num_heads=8, attention_type='0010', kv_stride=2), position='after_conv2') ] block = Bottleneck(64, 16, plugins=plugins) assert block.gen_attention_block.in_channels == 16 x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) # Test Bottleneck with 1 GeneralizedAttention after conv2, 1 NonLocal2D # after conv2, 1 ContextBlock after conv3 plugins = [ dict( cfg=dict( type='GeneralizedAttention', spatial_range=-1, num_heads=8, attention_type='0010', kv_stride=2), position='after_conv2'), dict(cfg=dict(type='NonLocal2d'), position='after_conv2'), dict( cfg=dict(type='ContextBlock', ratio=1. / 16), position='after_conv3') ] block = Bottleneck(64, 16, plugins=plugins) assert block.gen_attention_block.in_channels == 16 assert block.nonlocal_block.in_channels == 16 assert block.context_block.in_channels == 64 x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) # Test Bottleneck with 1 ContextBlock after conv2, 2 ContextBlock after # conv3 plugins = [ dict( cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1), position='after_conv2'), dict( cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2), position='after_conv3'), dict( cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=3), position='after_conv3') ] block = Bottleneck(64, 16, plugins=plugins) assert block.context_block1.in_channels == 16 assert block.context_block2.in_channels == 64 assert block.context_block3.in_channels == 64 x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) def test_simplied_basic_block(): with pytest.raises(AssertionError): # Not implemented yet. dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False) SimplifiedBasicBlock(64, 64, dcn=dcn) with pytest.raises(AssertionError): # Not implemented yet. plugins = [ dict( cfg=dict(type='ContextBlock', ratio=1. / 16), position='after_conv3') ] SimplifiedBasicBlock(64, 64, plugins=plugins) with pytest.raises(AssertionError): # Not implemented yet plugins = [ dict( cfg=dict( type='GeneralizedAttention', spatial_range=-1, num_heads=8, attention_type='0010', kv_stride=2), position='after_conv2') ] SimplifiedBasicBlock(64, 64, plugins=plugins) with pytest.raises(AssertionError): # Not implemented yet SimplifiedBasicBlock(64, 64, with_cp=True) # test SimplifiedBasicBlock structure and forward block = SimplifiedBasicBlock(64, 64) assert block.conv1.in_channels == 64 assert block.conv1.out_channels == 64 assert block.conv1.kernel_size == (3, 3) assert block.conv2.in_channels == 64 assert block.conv2.out_channels == 64 assert block.conv2.kernel_size == (3, 3) x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) # test SimplifiedBasicBlock without norm block = SimplifiedBasicBlock(64, 64, norm_cfg=None) assert block.norm1 is None assert block.norm2 is None x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) def test_resnet_res_layer(): # Test ResLayer of 3 Bottleneck w\o downsample layer = ResLayer(Bottleneck, 64, 16, 3) assert len(layer) == 3 assert layer[0].conv1.in_channels == 64 assert layer[0].conv1.out_channels == 16 for i in range(1, len(layer)): assert layer[i].conv1.in_channels == 64 assert layer[i].conv1.out_channels == 16 for i in range(len(layer)): assert layer[i].downsample is None x = torch.randn(1, 64, 56, 56) x_out = layer(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) # Test ResLayer of 3 Bottleneck with downsample layer = ResLayer(Bottleneck, 64, 64, 3) assert layer[0].downsample[0].out_channels == 256 for i in range(1, len(layer)): assert layer[i].downsample is None x = torch.randn(1, 64, 56, 56) x_out = layer(x) assert x_out.shape == torch.Size([1, 256, 56, 56]) # Test ResLayer of 3 Bottleneck with stride=2 layer = ResLayer(Bottleneck, 64, 64, 3, stride=2) assert layer[0].downsample[0].out_channels == 256 assert layer[0].downsample[0].stride == (2, 2) for i in range(1, len(layer)): assert layer[i].downsample is None x = torch.randn(1, 64, 56, 56) x_out = layer(x) assert x_out.shape == torch.Size([1, 256, 28, 28]) # Test ResLayer of 3 Bottleneck with stride=2 and average downsample layer = ResLayer(Bottleneck, 64, 64, 3, stride=2, avg_down=True) assert isinstance(layer[0].downsample[0], AvgPool2d) assert layer[0].downsample[1].out_channels == 256 assert layer[0].downsample[1].stride == (1, 1) for i in range(1, len(layer)): assert layer[i].downsample is None x = torch.randn(1, 64, 56, 56) x_out = layer(x) assert x_out.shape == torch.Size([1, 256, 28, 28]) # Test ResLayer of 3 BasicBlock with stride=2 and downsample_first=False layer = ResLayer(BasicBlock, 64, 64, 3, stride=2, downsample_first=False) assert layer[2].downsample[0].out_channels == 64 assert layer[2].downsample[0].stride == (2, 2) for i in range(len(layer) - 1): assert layer[i].downsample is None x = torch.randn(1, 64, 56, 56) x_out = layer(x) assert x_out.shape == torch.Size([1, 64, 28, 28]) def test_resnest_stem(): # Test default stem_channels model = ResNet(50) assert model.stem_channels == 64 assert model.conv1.out_channels == 64 assert model.norm1.num_features == 64 # Test default stem_channels, with base_channels=32 model = ResNet(50, base_channels=32) assert model.stem_channels == 32 assert model.conv1.out_channels == 32 assert model.norm1.num_features == 32 assert model.layer1[0].conv1.in_channels == 32 # Test stem_channels=64 model = ResNet(50, stem_channels=64) assert model.stem_channels == 64 assert model.conv1.out_channels == 64 assert model.norm1.num_features == 64 assert model.layer1[0].conv1.in_channels == 64 # Test stem_channels=64, with base_channels=32 model = ResNet(50, stem_channels=64, base_channels=32) assert model.stem_channels == 64 assert model.conv1.out_channels == 64 assert model.norm1.num_features == 64 assert model.layer1[0].conv1.in_channels == 64 # Test stem_channels=128 model = ResNet(depth=50, stem_channels=128) model.init_weights() model.train() assert model.conv1.out_channels == 128 assert model.layer1[0].conv1.in_channels == 128 # Test V1d stem_channels model = ResNetV1d(depth=50, stem_channels=128) model.init_weights() model.train() assert model.stem[0].out_channels == 64 assert model.stem[1].num_features == 64 assert model.stem[3].out_channels == 64 assert model.stem[4].num_features == 64 assert model.stem[6].out_channels == 128 assert model.stem[7].num_features == 128 assert model.layer1[0].conv1.in_channels == 128 def test_resnet_backbone(): """Test resnet backbone.""" with pytest.raises(KeyError): # ResNet depth should be in [18, 34, 50, 101, 152] ResNet(20) with pytest.raises(AssertionError): # In ResNet: 1 <= num_stages <= 4 ResNet(50, num_stages=0) with pytest.raises(AssertionError): # len(stage_with_dcn) == num_stages dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False) ResNet(50, dcn=dcn, stage_with_dcn=(True, )) with pytest.raises(AssertionError): # len(stage_with_plugin) == num_stages plugins = [ dict( cfg=dict(type='ContextBlock', ratio=1. / 16), stages=(False, True, True), position='after_conv3') ] ResNet(50, plugins=plugins) with pytest.raises(AssertionError): # In ResNet: 1 <= num_stages <= 4 ResNet(50, num_stages=5) with pytest.raises(AssertionError): # len(strides) == len(dilations) == num_stages ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3) with pytest.raises(TypeError): # pretrained must be a string path model = ResNet(50) model.init_weights(pretrained=0) with pytest.raises(AssertionError): # Style must be in ['pytorch', 'caffe'] ResNet(50, style='tensorflow') # Test ResNet50 norm_eval=True model = ResNet(50, norm_eval=True) model.init_weights() model.train() assert check_norm_state(model.modules(), False) # Test ResNet50 with torchvision pretrained weight model = ResNet(depth=50, norm_eval=True) model.init_weights('torchvision://resnet50') model.train() assert check_norm_state(model.modules(), False) # Test ResNet50 with first stage frozen frozen_stages = 1 model = ResNet(50, frozen_stages=frozen_stages) model.init_weights() model.train() assert model.norm1.training is False for layer in [model.conv1, model.norm1]: for param in layer.parameters(): assert param.requires_grad is False for i in range(1, frozen_stages + 1): layer = getattr(model, f'layer{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in layer.parameters(): assert param.requires_grad is False # Test ResNet50V1d with first stage frozen model = ResNetV1d(depth=50, frozen_stages=frozen_stages) assert len(model.stem) == 9 model.init_weights() model.train() assert check_norm_state(model.stem, False) for param in model.stem.parameters(): assert param.requires_grad is False for i in range(1, frozen_stages + 1): layer = getattr(model, f'layer{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in layer.parameters(): assert param.requires_grad is False # Test ResNet18 forward model = ResNet(18) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 64, 56, 56]) assert feat[1].shape == torch.Size([1, 128, 28, 28]) assert feat[2].shape == torch.Size([1, 256, 14, 14]) assert feat[3].shape == torch.Size([1, 512, 7, 7]) # Test ResNet18 with checkpoint forward model = ResNet(18, with_cp=True) for m in model.modules(): if is_block(m): assert m.with_cp # Test ResNet50 with BatchNorm forward model = ResNet(50) for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNet50 with layers 1, 2, 3 out forward model = ResNet(50, out_indices=(0, 1, 2)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 3 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) # Test ResNet50 with checkpoint forward model = ResNet(50, with_cp=True) for m in model.modules(): if is_block(m): assert m.with_cp model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNet50 with GroupNorm forward model = ResNet( 50, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)) for m in model.modules(): if is_norm(m): assert isinstance(m, GroupNorm) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNet50 with 1 GeneralizedAttention after conv2, 1 NonLocal2D # after conv2, 1 ContextBlock after conv3 in layers 2, 3, 4 plugins = [ dict( cfg=dict( type='GeneralizedAttention', spatial_range=-1, num_heads=8, attention_type='0010', kv_stride=2), stages=(False, True, True, True), position='after_conv2'), dict(cfg=dict(type='NonLocal2d'), position='after_conv2'), dict( cfg=dict(type='ContextBlock', ratio=1. / 16), stages=(False, True, True, False), position='after_conv3') ] model = ResNet(50, plugins=plugins) for m in model.layer1.modules(): if is_block(m): assert not hasattr(m, 'context_block') assert not hasattr(m, 'gen_attention_block') assert m.nonlocal_block.in_channels == 64 for m in model.layer2.modules(): if is_block(m): assert m.nonlocal_block.in_channels == 128 assert m.gen_attention_block.in_channels == 128 assert m.context_block.in_channels == 512 for m in model.layer3.modules(): if is_block(m): assert m.nonlocal_block.in_channels == 256 assert m.gen_attention_block.in_channels == 256 assert m.context_block.in_channels == 1024 for m in model.layer4.modules(): if is_block(m): assert m.nonlocal_block.in_channels == 512 assert m.gen_attention_block.in_channels == 512 assert not hasattr(m, 'context_block') model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNet50 with 1 ContextBlock after conv2, 1 ContextBlock after # conv3 in layers 2, 3, 4 plugins = [ dict( cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1), stages=(False, True, True, False), position='after_conv3'), dict( cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2), stages=(False, True, True, False), position='after_conv3') ] model = ResNet(50, plugins=plugins) for m in model.layer1.modules(): if is_block(m): assert not hasattr(m, 'context_block') assert not hasattr(m, 'context_block1') assert not hasattr(m, 'context_block2') for m in model.layer2.modules(): if is_block(m): assert not hasattr(m, 'context_block') assert m.context_block1.in_channels == 512 assert m.context_block2.in_channels == 512 for m in model.layer3.modules(): if is_block(m): assert not hasattr(m, 'context_block') assert m.context_block1.in_channels == 1024 assert m.context_block2.in_channels == 1024 for m in model.layer4.modules(): if is_block(m): assert not hasattr(m, 'context_block') assert not hasattr(m, 'context_block1') assert not hasattr(m, 'context_block2') model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNet50 zero initialization of residual model = ResNet(50, zero_init_residual=True) model.init_weights() for m in model.modules(): if isinstance(m, Bottleneck): assert assert_params_all_zeros(m.norm3) elif isinstance(m, BasicBlock): assert assert_params_all_zeros(m.norm2) model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNetV1d forward model = ResNetV1d(depth=50) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7])