import pytest import torch from mmdet.models.backbones import ResNeSt from mmdet.models.backbones.resnest import Bottleneck as BottleneckS def test_resnest_bottleneck(): with pytest.raises(AssertionError): # Style must be in ['pytorch', 'caffe'] BottleneckS(64, 64, radix=2, reduction_factor=4, style='tensorflow') # Test ResNeSt Bottleneck structure block = BottleneckS( 64, 256, radix=2, reduction_factor=4, stride=2, style='pytorch') assert block.avd_layer.stride == 2 assert block.conv2.channels == 256 # Test ResNeSt Bottleneck forward block = BottleneckS(64, 16, radix=2, reduction_factor=4) x = torch.randn(2, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([2, 64, 56, 56]) def test_resnest_backbone(): with pytest.raises(KeyError): # ResNeSt depth should be in [50, 101, 152, 200] ResNeSt(depth=18) # Test ResNeSt with radix 2, reduction_factor 4 model = ResNeSt( depth=50, radix=2, reduction_factor=4, out_indices=(0, 1, 2, 3)) model.init_weights() model.train() imgs = torch.randn(2, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([2, 256, 56, 56]) assert feat[1].shape == torch.Size([2, 512, 28, 28]) assert feat[2].shape == torch.Size([2, 1024, 14, 14]) assert feat[3].shape == torch.Size([2, 2048, 7, 7])