import pytest import torch from mmdet.models.backbones import Res2Net from mmdet.models.backbones.res2net import Bottle2neck from .utils import is_block def test_res2net_bottle2neck(): with pytest.raises(AssertionError): # Style must be in ['pytorch', 'caffe'] Bottle2neck(64, 64, base_width=26, scales=4, style='tensorflow') with pytest.raises(AssertionError): # Scale must be larger than 1 Bottle2neck(64, 64, base_width=26, scales=1, style='pytorch') # Test Res2Net Bottle2neck structure block = Bottle2neck( 64, 64, base_width=26, stride=2, scales=4, style='pytorch') assert block.scales == 4 # Test Res2Net Bottle2neck with DCN dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False) with pytest.raises(AssertionError): # conv_cfg must be None if dcn is not None Bottle2neck( 64, 64, base_width=26, scales=4, dcn=dcn, conv_cfg=dict(type='Conv')) Bottle2neck(64, 64, dcn=dcn) # Test Res2Net Bottle2neck forward block = Bottle2neck(64, 16, base_width=26, scales=4) x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) def test_res2net_backbone(): with pytest.raises(KeyError): # Res2Net depth should be in [50, 101, 152] Res2Net(depth=18) # Test Res2Net with scales 4, base_width 26 model = Res2Net(depth=50, scales=4, base_width=26) for m in model.modules(): if is_block(m): assert m.scales == 4 model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7])