import pytest import torch from mmdet.models.backbones import RegNet regnet_test_data = [ ('regnetx_400mf', dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0), [32, 64, 160, 384]), ('regnetx_800mf', dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16, bot_mul=1.0), [64, 128, 288, 672]), ('regnetx_1.6gf', dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18, bot_mul=1.0), [72, 168, 408, 912]), ('regnetx_3.2gf', dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25, bot_mul=1.0), [96, 192, 432, 1008]), ('regnetx_4.0gf', dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23, bot_mul=1.0), [80, 240, 560, 1360]), ('regnetx_6.4gf', dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17, bot_mul=1.0), [168, 392, 784, 1624]), ('regnetx_8.0gf', dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23, bot_mul=1.0), [80, 240, 720, 1920]), ('regnetx_12gf', dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, bot_mul=1.0), [224, 448, 896, 2240]), ] @pytest.mark.parametrize('arch_name,arch,out_channels', regnet_test_data) def test_regnet_backbone(arch_name, arch, out_channels): with pytest.raises(AssertionError): # ResNeXt depth should be in [50, 101, 152] RegNet(arch_name + '233') # Test RegNet with arch_name model = RegNet(arch_name) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, out_channels[0], 56, 56]) assert feat[1].shape == torch.Size([1, out_channels[1], 28, 28]) assert feat[2].shape == torch.Size([1, out_channels[2], 14, 14]) assert feat[3].shape == torch.Size([1, out_channels[3], 7, 7]) # Test RegNet with arch model = RegNet(arch) assert feat[0].shape == torch.Size([1, out_channels[0], 56, 56]) assert feat[1].shape == torch.Size([1, out_channels[1], 28, 28]) assert feat[2].shape == torch.Size([1, out_channels[2], 14, 14]) assert feat[3].shape == torch.Size([1, out_channels[3], 7, 7])