# Tutorial 4: Customize Models We basically categorize model components into 5 types. - backbone: usually an FCN network to extract feature maps, e.g., ResNet, MobileNet. - neck: the component between backbones and heads, e.g., FPN, PAFPN. - head: the component for specific tasks, e.g., bbox prediction and mask prediction. - roi extractor: the part for extracting RoI features from feature maps, e.g., RoI Align. - loss: the component in head for calculating losses, e.g., FocalLoss, L1Loss, and GHMLoss. ## Develop new components ### Add a new backbone Here we show how to develop new components with an example of MobileNet. #### 1. Define a new backbone (e.g. MobileNet) Create a new file `mmdet/models/backbones/mobilenet.py`. ```python import torch.nn as nn from ..builder import BACKBONES @BACKBONES.register_module() class MobileNet(nn.Module): def __init__(self, arg1, arg2): pass def forward(self, x): # should return a tuple pass def init_weights(self, pretrained=None): pass ``` #### 2. Import the module You can either add the following line to `mmdet/models/backbones/__init__.py` ```python from .mobilenet import MobileNet ``` or alternatively add ```python custom_imports = dict( imports=['mmdet.models.backbones.mobilenet'], allow_failed_imports=False) ``` to the config file to avoid modifying the original code. #### 3. Use the backbone in your config file ```python model = dict( ... backbone=dict( type='MobileNet', arg1=xxx, arg2=xxx), ... ``` ### Add new necks #### 1. Define a neck (e.g. PAFPN) Create a new file `mmdet/models/necks/pafpn.py`. ```python from ..builder import NECKS @NECKS.register_module() class PAFPN(nn.Module): def __init__(self, in_channels, out_channels, num_outs, start_level=0, end_level=-1, add_extra_convs=False): pass def forward(self, inputs): # implementation is ignored pass ``` #### 2. Import the module You can either add the following line to `mmdet/models/necks/__init__.py`, ```python from .pafpn import PAFPN ``` or alternatively add ```python custom_imports = dict( imports=['mmdet.models.necks.pafpn.py'], allow_failed_imports=False) ``` to the config file and avoid modifying the original code. #### 3. Modify the config file ```python neck=dict( type='PAFPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5) ``` ### Add new heads Here we show how to develop a new head with the example of [Double Head R-CNN](https://arxiv.org/abs/1904.06493) as the following. First, add a new bbox head in `mmdet/models/roi_heads/bbox_heads/double_bbox_head.py`. Double Head R-CNN implements a new bbox head for object detection. To implement a bbox head, basically we need to implement three functions of the new module as the following. ```python from mmdet.models.builder import HEADS from .bbox_head import BBoxHead @HEADS.register_module() class DoubleConvFCBBoxHead(BBoxHead): r"""Bbox head used in Double-Head R-CNN /-> cls /-> shared convs -> \-> reg roi features /-> cls \-> shared fc -> \-> reg """ # noqa: W605 def __init__(self, num_convs=0, num_fcs=0, conv_out_channels=1024, fc_out_channels=1024, conv_cfg=None, norm_cfg=dict(type='BN'), **kwargs): kwargs.setdefault('with_avg_pool', True) super(DoubleConvFCBBoxHead, self).__init__(**kwargs) def init_weights(self): # conv layers are already initialized by ConvModule def forward(self, x_cls, x_reg): ``` Second, implement a new RoI Head if it is necessary. We plan to inherit the new `DoubleHeadRoIHead` from `StandardRoIHead`. We can find that a `StandardRoIHead` already implements the following functions. ```python import torch from mmdet.core import bbox2result, bbox2roi, build_assigner, build_sampler from ..builder import HEADS, build_head, build_roi_extractor from .base_roi_head import BaseRoIHead from .test_mixins import BBoxTestMixin, MaskTestMixin @HEADS.register_module() class StandardRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin): """Simplest base roi head including one bbox head and one mask head. """ def init_assigner_sampler(self): def init_bbox_head(self, bbox_roi_extractor, bbox_head): def init_mask_head(self, mask_roi_extractor, mask_head): def init_weights(self, pretrained): def forward_dummy(self, x, proposals): def forward_train(self, x, img_metas, proposal_list, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None): def _bbox_forward(self, x, rois): def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels, img_metas): def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks, img_metas): def _mask_forward(self, x, rois=None, pos_inds=None, bbox_feats=None): def simple_test(self, x, proposal_list, img_metas, proposals=None, rescale=False): """Test without augmentation.""" ``` Double Head's modification is mainly in the bbox_forward logic, and it inherits other logics from the `StandardRoIHead`. In the `mmdet/models/roi_heads/double_roi_head.py`, we implement the new RoI Head as the following: ```python from ..builder import HEADS from .standard_roi_head import StandardRoIHead @HEADS.register_module() class DoubleHeadRoIHead(StandardRoIHead): """RoI head for Double Head RCNN https://arxiv.org/abs/1904.06493 """ def __init__(self, reg_roi_scale_factor, **kwargs): super(DoubleHeadRoIHead, self).__init__(**kwargs) self.reg_roi_scale_factor = reg_roi_scale_factor def _bbox_forward(self, x, rois): bbox_cls_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois) bbox_reg_feats = self.bbox_roi_extractor( x[:self.bbox_roi_extractor.num_inputs], rois, roi_scale_factor=self.reg_roi_scale_factor) if self.with_shared_head: bbox_cls_feats = self.shared_head(bbox_cls_feats) bbox_reg_feats = self.shared_head(bbox_reg_feats) cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats) bbox_results = dict( cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_cls_feats) return bbox_results ``` Last, the users need to add the module in `mmdet/models/bbox_heads/__init__.py` and `mmdet/models/roi_heads/__init__.py` thus the corresponding registry could find and load them. Alternatively, the users can add ```python custom_imports=dict( imports=['mmdet.models.roi_heads.double_roi_head', 'mmdet.models.bbox_heads.double_bbox_head']) ``` to the config file and achieve the same goal. The config file of Double Head R-CNN is as the following ```python _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' model = dict( roi_head=dict( type='DoubleHeadRoIHead', reg_roi_scale_factor=1.3, bbox_head=dict( _delete_=True, type='DoubleConvFCBBoxHead', num_convs=4, num_fcs=2, in_channels=256, conv_out_channels=1024, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=2.0)))) ``` Since MMDetection 2.0, the config system supports to inherit configs such that the users can focus on the modification. The Double Head R-CNN mainly uses a new DoubleHeadRoIHead and a new `DoubleConvFCBBoxHead`, the arguments are set according to the `__init__` function of each module. ### Add new loss Assume you want to add a new loss as `MyLoss`, for bounding box regression. To add a new loss function, the users need implement it in `mmdet/models/losses/my_loss.py`. The decorator `weighted_loss` enable the loss to be weighted for each element. ```python import torch import torch.nn as nn from ..builder import LOSSES from .utils import weighted_loss @weighted_loss def my_loss(pred, target): assert pred.size() == target.size() and target.numel() > 0 loss = torch.abs(pred - target) return loss @LOSSES.register_module() class MyLoss(nn.Module): def __init__(self, reduction='mean', loss_weight=1.0): super(MyLoss, self).__init__() self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_bbox = self.loss_weight * my_loss( pred, target, weight, reduction=reduction, avg_factor=avg_factor) return loss_bbox ``` Then the users need to add it in the `mmdet/models/losses/__init__.py`. ```python from .my_loss import MyLoss, my_loss ``` Alternatively, you can add ```python custom_imports=dict( imports=['mmdet.models.losses.my_loss']) ``` to the config file and achieve the same goal. To use it, modify the `loss_xxx` field. Since MyLoss is for regression, you need to modify the `loss_bbox` field in the head. ```python loss_bbox=dict(type='MyLoss', loss_weight=1.0)) ```