import argparse import glob import json import os.path as osp import shutil import subprocess import mmcv import torch def process_checkpoint(in_file, out_file): checkpoint = torch.load(in_file, map_location='cpu') # remove optimizer for smaller file size if 'optimizer' in checkpoint: del checkpoint['optimizer'] # if it is necessary to remove some sensitive data in checkpoint['meta'], # add the code here. torch.save(checkpoint, out_file) sha = subprocess.check_output(['sha256sum', out_file]).decode() final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8]) subprocess.Popen(['mv', out_file, final_file]) return final_file def get_final_epoch(config): cfg = mmcv.Config.fromfile('./configs/' + config) return cfg.total_epochs def get_final_results(log_json_path, epoch, results_lut): result_dict = dict() with open(log_json_path, 'r') as f: for line in f.readlines(): log_line = json.loads(line) if 'mode' not in log_line.keys(): continue if log_line['mode'] == 'train' and log_line['epoch'] == epoch: result_dict['memory'] = log_line['memory'] if log_line['mode'] == 'val' and log_line['epoch'] == epoch: result_dict.update({ key: log_line[key] for key in results_lut if key in log_line }) return result_dict def parse_args(): parser = argparse.ArgumentParser(description='Gather benchmarked models') parser.add_argument( 'root', type=str, help='root path of benchmarked models to be gathered') parser.add_argument( 'out', type=str, help='output path of gathered models to be stored') args = parser.parse_args() return args def main(): args = parse_args() models_root = args.root models_out = args.out mmcv.mkdir_or_exist(models_out) # find all models in the root directory to be gathered raw_configs = list(mmcv.scandir('./configs', '.py', recursive=True)) # filter configs that is not trained in the experiments dir used_configs = [] for raw_config in raw_configs: if osp.exists(osp.join(models_root, raw_config)): used_configs.append(raw_config) print(f'Find {len(used_configs)} models to be gathered') # find final_ckpt and log file for trained each config # and parse the best performance model_infos = [] for used_config in used_configs: exp_dir = osp.join(models_root, used_config) # check whether the exps is finished final_epoch = get_final_epoch(used_config) final_model = 'epoch_{}.pth'.format(final_epoch) model_path = osp.join(exp_dir, final_model) # skip if the model is still training if not osp.exists(model_path): continue # get the latest logs log_json_path = list( sorted(glob.glob(osp.join(exp_dir, '*.log.json'))))[-1] log_txt_path = list(sorted(glob.glob(osp.join(exp_dir, '*.log'))))[-1] cfg = mmcv.Config.fromfile('./configs/' + used_config) results_lut = cfg.evaluation.metric if not isinstance(results_lut, list): results_lut = [results_lut] # case when using VOC, the evaluation key is only 'mAP' results_lut = [key + '_mAP' for key in results_lut if 'mAP' not in key] model_performance = get_final_results(log_json_path, final_epoch, results_lut) if model_performance is None: continue model_time = osp.split(log_txt_path)[-1].split('.')[0] model_infos.append( dict( config=used_config, results=model_performance, epochs=final_epoch, model_time=model_time, log_json_path=osp.split(log_json_path)[-1])) # publish model for each checkpoint publish_model_infos = [] for model in model_infos: model_publish_dir = osp.join(models_out, model['config'].rstrip('.py')) mmcv.mkdir_or_exist(model_publish_dir) model_name = osp.split(model['config'])[-1].split('.')[0] model_name += '_' + model['model_time'] publish_model_path = osp.join(model_publish_dir, model_name) trained_model_path = osp.join(models_root, model['config'], 'epoch_{}.pth'.format(model['epochs'])) # convert model final_model_path = process_checkpoint(trained_model_path, publish_model_path) # copy log shutil.copy( osp.join(models_root, model['config'], model['log_json_path']), osp.join(model_publish_dir, f'{model_name}.log.json')) shutil.copy( osp.join(models_root, model['config'], model['log_json_path'].rstrip('.json')), osp.join(model_publish_dir, f'{model_name}.log')) # copy config to guarantee reproducibility config_path = model['config'] config_path = osp.join( 'configs', config_path) if 'configs' not in config_path else config_path target_cconfig_path = osp.split(config_path)[-1] shutil.copy(config_path, osp.join(model_publish_dir, target_cconfig_path)) model['model_path'] = final_model_path publish_model_infos.append(model) models = dict(models=publish_model_infos) print(f'Totally gathered {len(publish_model_infos)} models') mmcv.dump(models, osp.join(models_out, 'model_info.json')) if __name__ == '__main__': main()