import mmcv import torch from mmdet.models.roi_heads.mask_heads import FCNMaskHead, MaskIoUHead from .utils import _dummy_bbox_sampling def test_mask_head_loss(): """Test mask head loss when mask target is empty.""" self = FCNMaskHead( num_convs=1, roi_feat_size=6, in_channels=8, conv_out_channels=8, num_classes=8) # Dummy proposals proposal_list = [ torch.Tensor([[23.6667, 23.8757, 228.6326, 153.8874]]), ] gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] sampling_results = _dummy_bbox_sampling(proposal_list, gt_bboxes, gt_labels) # create dummy mask import numpy as np from mmdet.core import BitmapMasks dummy_mask = np.random.randint(0, 2, (1, 160, 240), dtype=np.uint8) gt_masks = [BitmapMasks(dummy_mask, 160, 240)] # create dummy train_cfg train_cfg = mmcv.Config(dict(mask_size=12, mask_thr_binary=0.5)) # Create dummy features "extracted" for each sampled bbox num_sampled = sum(len(res.bboxes) for res in sampling_results) dummy_feats = torch.rand(num_sampled, 8, 6, 6) mask_pred = self.forward(dummy_feats) mask_targets = self.get_targets(sampling_results, gt_masks, train_cfg) pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) loss_mask = self.loss(mask_pred, mask_targets, pos_labels) onegt_mask_loss = sum(loss_mask['loss_mask']) assert onegt_mask_loss.item() > 0, 'mask loss should be non-zero' # test mask_iou_head mask_iou_head = MaskIoUHead( num_convs=1, num_fcs=1, roi_feat_size=6, in_channels=8, conv_out_channels=8, fc_out_channels=8, num_classes=8) pos_mask_pred = mask_pred[range(mask_pred.size(0)), pos_labels] mask_iou_pred = mask_iou_head(dummy_feats, pos_mask_pred) pos_mask_iou_pred = mask_iou_pred[range(mask_iou_pred.size(0)), pos_labels] mask_iou_targets = mask_iou_head.get_targets(sampling_results, gt_masks, pos_mask_pred, mask_targets, train_cfg) loss_mask_iou = mask_iou_head.loss(pos_mask_iou_pred, mask_iou_targets) onegt_mask_iou_loss = loss_mask_iou['loss_mask_iou'].sum() assert onegt_mask_iou_loss.item() >= 0