import mmcv import torch from mmdet.models.dense_heads import PISARetinaHead, PISASSDHead from mmdet.models.roi_heads import PISARoIHead def test_pisa_retinanet_head_loss(): """Tests pisa retinanet head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] cfg = mmcv.Config( dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2), allowed_border=0, pos_weight=-1, debug=False)) self = PISARetinaHead(num_classes=4, in_channels=1, train_cfg=cfg) # Anchor head expects a multiple levels of features per image feat = [ torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))) for i in range(len(self.anchor_generator.strides)) ] cls_scores, bbox_preds = self.forward(feat) # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'].sum() empty_box_loss = empty_gt_losses['loss_bbox'].sum() assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) onegt_cls_loss = one_gt_losses['loss_cls'].sum() onegt_box_loss = one_gt_losses['loss_bbox'].sum() assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero' def test_pisa_ssd_head_loss(): """Tests pisa ssd head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] cfg = mmcv.Config( dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0., ignore_iof_thr=-1, gt_max_assign_all=False), isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2), smoothl1_beta=1., allowed_border=-1, pos_weight=-1, neg_pos_ratio=3, debug=False)) ssd_anchor_generator = dict( type='SSDAnchorGenerator', scale_major=False, input_size=300, strides=[1], ratios=([2], ), basesize_ratio_range=(0.15, 0.9)) self = PISASSDHead( num_classes=4, in_channels=(1, ), train_cfg=cfg, anchor_generator=ssd_anchor_generator) # Anchor head expects a multiple levels of features per image feat = [ torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))) for i in range(len(self.anchor_generator.strides)) ] cls_scores, bbox_preds = self.forward(feat) # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) # SSD is special, #pos:#neg = 1: 3, so empth gt will also lead loss cls = 0 assert empty_cls_loss.item() == 0, 'cls loss should be non-zero' assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero' def test_pisa_roi_head_loss(): """Tests pisa roi head loss when truth is empty and non-empty.""" train_cfg = mmcv.Config( dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='ScoreHLRSampler', num=4, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True, k=0.5, bias=0.), isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2), allowed_border=0, pos_weight=-1, debug=False)) bbox_roi_extractor = dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=1, featmap_strides=[1]) bbox_head = dict( type='Shared2FCBBoxHead', in_channels=1, fc_out_channels=2, roi_feat_size=7, num_classes=4, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)) self = PISARoIHead(bbox_roi_extractor, bbox_head, train_cfg=train_cfg) s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] # Anchor head expects a multiple levels of features per image feat = [ torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))) for i in range(1) ] proposal_list = [ torch.Tensor([[22.6667, 22.8757, 238.6326, 151.8874], [0, 3, 5, 7]]) ] # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.forward_train(feat, img_metas, proposal_list, gt_bboxes, gt_labels, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'].sum() empty_box_loss = empty_gt_losses['loss_bbox'].sum() assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero for # random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.forward_train(feat, img_metas, proposal_list, gt_bboxes, gt_labels, gt_bboxes_ignore) onegt_cls_loss = one_gt_losses['loss_cls'].sum() onegt_box_loss = one_gt_losses['loss_bbox'].sum() assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero'