_base_ = ['./ld_r18_gflv1_r101_fpn_coco_1x.py'] model = dict( pretrained='torchvision://resnet34', backbone=dict( type='ResNet', depth=34, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), neck=dict( type='FPN', in_channels=[64, 128, 256, 512], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5))