_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( type='FOVEA', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, num_outs=5, add_extra_convs='on_input'), bbox_head=dict( type='FoveaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], base_edge_list=[16, 32, 64, 128, 256], scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)), sigma=0.4, with_deform=False, loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=1.50, alpha=0.4, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)), # training and testing settings train_cfg=dict(), test_cfg=dict( nms_pre=1000, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)) data = dict(samples_per_gpu=4, workers_per_gpu=4) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)