--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: feedback-classification results: [] --- # feedback-classification This model is a fine-tuned version of [qarib/bert-base-qarib_far_9920k](https://huggingface.co/qarib/bert-base-qarib_far_9920k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0442 - Macro F1: 0.8311 - Accuracy: 0.8275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | No log | 1.0 | 342 | 0.5528 | 0.7897 | 0.7851 | | 0.5472 | 2.0 | 684 | 0.6922 | 0.8200 | 0.8129 | | 0.2753 | 3.0 | 1026 | 0.9658 | 0.8113 | 0.8070 | | 0.2753 | 4.0 | 1368 | 0.9768 | 0.8349 | 0.8304 | | 0.1171 | 5.0 | 1710 | 1.0442 | 0.8311 | 0.8275 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3