metadata
license: apache-2.0
language:
- uk
pipeline_tag: automatic-speech-recognition
datasets:
- mozilla-foundation/common_voice_10_0
- Yehor/openstt-uk
metrics:
- wer
model-index:
- name: w2v-bert-uk-v2.1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_10_0
type: common_voice_10_0
config: uk
split: test
args: uk
metrics:
- name: WER
type: wer
value: 9.0777
- name: CER
type: cer
value: 1.9839
Flashlight for Ukrainian
Community
- Discord: https://bit.ly/discord-uds
- Speech Recognition: https://t.me/speech_recognition_uk
- Speech Synthesis: https://t.me/speech_synthesis_uk
See other Ukrainian models: https://github.com/egorsmkv/speech-recognition-uk
Overview
This repository contains the acoustic model for Ukrainian trained on Flashlight framework: https://github.com/flashlight/flashlight/tree/main/flashlight/app/asr
- Architecture: Conformer (300m params)
- Data in train: Common Voice 10 & Voice of America
- Trained epochs: 410
- Train time: around a week (RTX A4000)
Quality
- WER: 9.0777% (id est the quality is 90.92%)
- CER: 1.9839%
How to test?
Run a container with Flashlight running with CPU
docker-compose up
# and in another termianl
docker exec -it flashlight_cpu bash
Run
Just with an AM:
/root/flashlight/build/bin/asr/fl_asr_test --am /models/uk_am.bin --datadir '' --emission_dir '' --uselexicon false \
--test /data/rows.lst --tokens /models/tokens.txt --lexicon /models/lexicon.txt --show
With an LM:
/root/flashlight/build/bin/asr/fl_asr_decode \
--am=/models/uk_am.bin \
--test=/data/labels_absolute.lst \
--maxload=3477 \
--nthread_decoder=2 \
--show \
--showletters \
--lexicon=/models/lexicon.txt \
--uselexicon=false \
--lm=/models/lm_4gram_500k.binary \
--lmtype=kenlm \
--decodertype=wrd \
--beamsize=200 \
--beamsizetoken=200 \
--beamthreshold=20 \
--lmweight=0.75 \
--wordscore=0 \
--eosscore=0 \
--silscore=0 \
--unkscore=0 \
--smearing=max
- labels_absolute.lst is from https://github.com/egorsmkv/cv10-uk-testset-clean
- lm_4gram_500k.binary is from https://huggingface.co/Yehor/kenlm-ukrainian/tree/main/news/lm-4gram-500k
How to fine-tune on own data?
/root/flashlight/build/bin/asr/fl_asr_train continue /models/ --flagsfile /models/train.flags
/models/
must contain .bin files
Cite this work
@misc {smoliakov_2025,
author = { {Smoliakov} },
title = { flashlight-uk (Revision 1ac154b) },
year = 2025,
url = { https://huggingface.co/Yehor/flashlight-uk },
doi = { 10.57967/hf/4577 },
publisher = { Hugging Face }
}