YarramsettiNaresh commited on
Commit
9e89176
1 Parent(s): 91fcf11

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.28 +/- 0.91
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:460021bd3aa88ca7f84bf1c98c1a58443bf02472cb9a150b35e38e17b0d57da1
3
+ size 108193
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8f62dcb130>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f8f62dbad80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1690253110589801394,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcSHePk7uTLdZGxQ/cSHePk7uTLdZGxQ/cSHePk7uTLdZGxQ/cSHePk7uTLdZGxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACWQovoNnuL69tIu/9EfPv8oriT6q68w/1ROpv7m+gj3MMbK/IFHZv2pFkb/wyZm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABxId4+Tu5Mt1kbFD92Vvc7fyzKuPzDJTtxId4+Tu5Mt1kbFD92Vvc7fyzKuPzDJTtxId4+Tu5Mt1kbFD92Vvc7fyzKuPzDJTtxId4+Tu5Mt1kbFD92Vvc7fyzKuPzDJTuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 4.3384889e-01 -1.2214832e-05 5.7854229e-01]\n [ 4.3384889e-01 -1.2214832e-05 5.7854229e-01]\n [ 4.3384889e-01 -1.2214832e-05 5.7854229e-01]\n [ 4.3384889e-01 -1.2214832e-05 5.7854229e-01]]",
38
+ "desired_goal": "[[-0.1644441 -0.36016473 -1.0914532 ]\n [-1.6193833 0.2679122 1.6009419 ]\n [-1.3209177 0.06384034 -1.3921447 ]\n [-1.6977882 -1.1349308 -1.2014751 ]]",
39
+ "observation": "[[ 4.3384889e-01 -1.2214832e-05 5.7854229e-01 7.5481487e-03\n -9.6403986e-05 2.5293818e-03]\n [ 4.3384889e-01 -1.2214832e-05 5.7854229e-01 7.5481487e-03\n -9.6403986e-05 2.5293818e-03]\n [ 4.3384889e-01 -1.2214832e-05 5.7854229e-01 7.5481487e-03\n -9.6403986e-05 2.5293818e-03]\n [ 4.3384889e-01 -1.2214832e-05 5.7854229e-01 7.5481487e-03\n -9.6403986e-05 2.5293818e-03]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANiLJPRPguz0TEJY+NSb2vYZcub2cT10+GyIKPrTUgj3r918+0RM0PBA2YT2ZUT4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.09820978 0.09173598 0.2930914 ]\n [-0.12019006 -0.09050851 0.216124 ]\n [ 0.13489573 0.06388226 0.21871917]\n [ 0.01099105 0.0549832 0.18585815]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFHZR9MAHAsCUhpRSlIwBbJRLMowBdJRHQKoDyydFvyd1fZQoaAZoCWgPQwgGDmjpChYMwJSGlFKUaBVLMmgWR0CqA43O4XoDdX2UKGgGaAloD0MI4UOJljweCsCUhpRSlGgVSzJoFkdAqgNQCCBf8nV9lChoBmgJaA9DCNmz5zI1qRDAlIaUUpRoFUsyaBZHQKoDBxnWatt1fZQoaAZoCWgPQwj/BBcrajAHwJSGlFKUaBVLMmgWR0CqBOYD1XeWdX2UKGgGaAloD0MIgEkqU8zB+L+UhpRSlGgVSzJoFkdAqgSoxN7BwnV9lChoBmgJaA9DCA/SU+QQYRHAlIaUUpRoFUsyaBZHQKoEa2jwhGJ1fZQoaAZoCWgPQwhAh/nyAuwHwJSGlFKUaBVLMmgWR0CqBCLFGXoldX2UKGgGaAloD0MINxjqsMLtB8CUhpRSlGgVSzJoFkdAqgZICnxaxHV9lChoBmgJaA9DCOPEVzuKUwHAlIaUUpRoFUsyaBZHQKoGCvlEJBx1fZQoaAZoCWgPQwgjTFEujX8VwJSGlFKUaBVLMmgWR0CqBc13Ux20dX2UKGgGaAloD0MILzTXaaSl/7+UhpRSlGgVSzJoFkdAqgWEuctoSXV9lChoBmgJaA9DCAc/cQD9ngfAlIaUUpRoFUsyaBZHQKoHbNTtLL91fZQoaAZoCWgPQwgvvmiPF5ILwJSGlFKUaBVLMmgWR0CqBy9hqj8DdX2UKGgGaAloD0MIUYaqmEpfC8CUhpRSlGgVSzJoFkdAqgbxmGucMHV9lChoBmgJaA9DCCl4CrlSD/a/lIaUUpRoFUsyaBZHQKoGqMnZ00Z1fZQoaAZoCWgPQwiVYdwNolUTwJSGlFKUaBVLMmgWR0CqCLRyOq//dX2UKGgGaAloD0MIJa5jXHExAMCUhpRSlGgVSzJoFkdAqgh3DNyHVXV9lChoBmgJaA9DCKDDfHkBRhHAlIaUUpRoFUsyaBZHQKoIOZl4C6p1fZQoaAZoCWgPQwjHLlG9NQAQwJSGlFKUaBVLMmgWR0CqB/Ds+mm+dX2UKGgGaAloD0MIwaikTkCzBMCUhpRSlGgVSzJoFkdAqgpYaHbh33V9lChoBmgJaA9DCFESEmkb//2/lIaUUpRoFUsyaBZHQKoKG3ZPEbZ1fZQoaAZoCWgPQwjcoWEx6voOwJSGlFKUaBVLMmgWR0CqCd5lOGj9dX2UKGgGaAloD0MIBFjk1w8RCcCUhpRSlGgVSzJoFkdAqgmV/2Cd0HV9lChoBmgJaA9DCDXrjO+LCw/AlIaUUpRoFUsyaBZHQKoMN+6y0KJ1fZQoaAZoCWgPQwgCvAUSFP8IwJSGlFKUaBVLMmgWR0CqC/sju8brdX2UKGgGaAloD0MIueNNfotOAcCUhpRSlGgVSzJoFkdAqgu+CXhOxnV9lChoBmgJaA9DCMITev1J7BDAlIaUUpRoFUsyaBZHQKoLdiRW9151fZQoaAZoCWgPQwhwzojS3mAOwJSGlFKUaBVLMmgWR0CqDhCd8RcvdX2UKGgGaAloD0MI/wdYq3Z9E8CUhpRSlGgVSzJoFkdAqg3T6N2ki3V9lChoBmgJaA9DCNeGinH+RgzAlIaUUpRoFUsyaBZHQKoNlvWpZOl1fZQoaAZoCWgPQwh+GYwRieIDwJSGlFKUaBVLMmgWR0CqDU5YxL00dX2UKGgGaAloD0MIH4XrUbiOEMCUhpRSlGgVSzJoFkdAqhA0n3L3bnV9lChoBmgJaA9DCOaxZmSQ2wbAlIaUUpRoFUsyaBZHQKoP+KHfuTl1fZQoaAZoCWgPQwjylNV0PdERwJSGlFKUaBVLMmgWR0CqD7wiqyWzdX2UKGgGaAloD0MImBk2yvoN/b+UhpRSlGgVSzJoFkdAqg9z37DVIHV9lChoBmgJaA9DCJqXw+47hv+/lIaUUpRoFUsyaBZHQKoRl04iosJ1fZQoaAZoCWgPQwgVWABTBg7/v5SGlFKUaBVLMmgWR0CqEVmICU5ddX2UKGgGaAloD0MI0IB6M2o+/r+UhpRSlGgVSzJoFkdAqhEbrPdEcHV9lChoBmgJaA9DCNOHLqhvWf2/lIaUUpRoFUsyaBZHQKoQ0oNNJvp1fZQoaAZoCWgPQwgfhlYnZ2gIwJSGlFKUaBVLMmgWR0CqEtV2A5JcdX2UKGgGaAloD0MIgGWlSSmoA8CUhpRSlGgVSzJoFkdAqhKYUQCjlHV9lChoBmgJaA9DCDPEsS5uowXAlIaUUpRoFUsyaBZHQKoSWuq3mV91fZQoaAZoCWgPQwgoSddMvpkGwJSGlFKUaBVLMmgWR0CqEhILgGbDdX2UKGgGaAloD0MImDEFa5ztBsCUhpRSlGgVSzJoFkdAqhP9MyrPt3V9lChoBmgJaA9DCGB4Jclz3QDAlIaUUpRoFUsyaBZHQKoTv2+wkgR1fZQoaAZoCWgPQwgEqn8QyXAIwJSGlFKUaBVLMmgWR0CqE4Gr8zhxdX2UKGgGaAloD0MIcqQzMPKSCMCUhpRSlGgVSzJoFkdAqhM4sZpBX3V9lChoBmgJaA9DCP0VMlcGVf6/lIaUUpRoFUsyaBZHQKoVBVVghKV1fZQoaAZoCWgPQwh8m/7sRwr8v5SGlFKUaBVLMmgWR0CqFMg/s3Q2dX2UKGgGaAloD0MIIQN5dvn2D8CUhpRSlGgVSzJoFkdAqhSK2jO9nXV9lChoBmgJaA9DCH5xqUpbPAPAlIaUUpRoFUsyaBZHQKoUQpvP1L91fZQoaAZoCWgPQwhPWOIBZTMDwJSGlFKUaBVLMmgWR0CqFmXeWOZLdX2UKGgGaAloD0MIB7Xf2okSBMCUhpRSlGgVSzJoFkdAqhYokgOjI3V9lChoBmgJaA9DCPG6fsFu+ALAlIaUUpRoFUsyaBZHQKoV6tbLU1B1fZQoaAZoCWgPQwghAaPLm2MKwJSGlFKUaBVLMmgWR0CqFaJEH+qBdX2UKGgGaAloD0MI8PeL2ZL1BcCUhpRSlGgVSzJoFkdAqheH2f02+HV9lChoBmgJaA9DCJOsw9FV+gHAlIaUUpRoFUsyaBZHQKoXSmu1WsB1fZQoaAZoCWgPQwgFoidlUmMDwJSGlFKUaBVLMmgWR0CqFwzXJ5midX2UKGgGaAloD0MIZHWr56T3CcCUhpRSlGgVSzJoFkdAqhbDwnYxtnV9lChoBmgJaA9DCOaw+47hkQzAlIaUUpRoFUsyaBZHQKoYyXyiEg51fZQoaAZoCWgPQwiQEVDhCBL7v5SGlFKUaBVLMmgWR0CqGIxlxwQ2dX2UKGgGaAloD0MII4PcRZgi/7+UhpRSlGgVSzJoFkdAqhhPQtz0YnV9lChoBmgJaA9DCBfUt8zpcgXAlIaUUpRoFUsyaBZHQKoYBze40/J1fZQoaAZoCWgPQwjh05y8yCQBwJSGlFKUaBVLMmgWR0CqGhvk7wKCdX2UKGgGaAloD0MIvjCZKhhV/L+UhpRSlGgVSzJoFkdAqhneilBQenV9lChoBmgJaA9DCP36ITZY+PK/lIaUUpRoFUsyaBZHQKoZoOCoS+R1fZQoaAZoCWgPQwgaMbPPY1T+v5SGlFKUaBVLMmgWR0CqGVf5+H8CdX2UKGgGaAloD0MInRN7aB8r/r+UhpRSlGgVSzJoFkdAqhs76P8ye3V9lChoBmgJaA9DCIEiFjHsMPy/lIaUUpRoFUsyaBZHQKoa/n7Hhjx1fZQoaAZoCWgPQwhUVtP1RBcEwJSGlFKUaBVLMmgWR0CqGsDLjghsdX2UKGgGaAloD0MIH5268lkeAcCUhpRSlGgVSzJoFkdAqhp3wPRRdnV9lChoBmgJaA9DCFGiJY+nJQ7AlIaUUpRoFUsyaBZHQKocjxp+MIh1fZQoaAZoCWgPQwhblxqhn9kRwJSGlFKUaBVLMmgWR0CqHFG47Rv4dX2UKGgGaAloD0MIzhsnhXlvAMCUhpRSlGgVSzJoFkdAqhwUGu9vj3V9lChoBmgJaA9DCICfceFASPW/lIaUUpRoFUsyaBZHQKoby0waisZ1fZQoaAZoCWgPQwhhpYKKqp/+v5SGlFKUaBVLMmgWR0CqHchib2DhdX2UKGgGaAloD0MIrRiuDoD4/L+UhpRSlGgVSzJoFkdAqh2LKeTV2HV9lChoBmgJaA9DCNcYdELoQALAlIaUUpRoFUsyaBZHQKodTW+XZ5B1fZQoaAZoCWgPQwgsLo7KTRQEwJSGlFKUaBVLMmgWR0CqHQRNATqTdX2UKGgGaAloD0MIxqLp7GTw+7+UhpRSlGgVSzJoFkdAqh7gPwuuinV9lChoBmgJaA9DCPYHym37fgfAlIaUUpRoFUsyaBZHQKoeoyY5T611fZQoaAZoCWgPQwgpstZQag8EwJSGlFKUaBVLMmgWR0CqHmWfkFOgdX2UKGgGaAloD0MItaSjHMxm/7+UhpRSlGgVSzJoFkdAqh4c0Nz8xnV9lChoBmgJaA9DCO7QsBh1DQ3AlIaUUpRoFUsyaBZHQKogREAo5Px1fZQoaAZoCWgPQwju6H+5Fk0HwJSGlFKUaBVLMmgWR0CqIAbLU1AJdX2UKGgGaAloD0MI9YQlHlCWCMCUhpRSlGgVSzJoFkdAqh/JNXYDknV9lChoBmgJaA9DCB9Hc2TlVw/AlIaUUpRoFUsyaBZHQKofgGHHmzV1fZQoaAZoCWgPQwiD9urjoa//v5SGlFKUaBVLMmgWR0CqIWP1UVBVdX2UKGgGaAloD0MI39xfPe6bCsCUhpRSlGgVSzJoFkdAqiEmh7E5yXV9lChoBmgJaA9DCEFn0qbqHvq/lIaUUpRoFUsyaBZHQKog6OsDGLl1fZQoaAZoCWgPQwhgd7rzxDPwv5SGlFKUaBVLMmgWR0CqIJ/G+9J0dX2UKGgGaAloD0MI7j1cctypBcCUhpRSlGgVSzJoFkdAqiKbZrYXf3V9lChoBmgJaA9DCOiiIeNR+hDAlIaUUpRoFUsyaBZHQKoiXjPv8ZV1fZQoaAZoCWgPQwj7BFCMLLkPwJSGlFKUaBVLMmgWR0CqIiCQkonbdX2UKGgGaAloD0MIu9HHfECg/L+UhpRSlGgVSzJoFkdAqiHXu7YkFHV9lChoBmgJaA9DCA8Ni1HX2u+/lIaUUpRoFUsyaBZHQKoj1n6Eal11fZQoaAZoCWgPQwhFhH8RNCYBwJSGlFKUaBVLMmgWR0CqI5kiUxEfdX2UKGgGaAloD0MIZi/bTlujD8CUhpRSlGgVSzJoFkdAqiNbp1RtQHV9lChoBmgJaA9DCDChgsMLYv+/lIaUUpRoFUsyaBZHQKojEsfaHsV1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3bb46a5994656656e13f97a0a7b034bb477c88032ac9d545d5e30b3010f1d01
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4da34b56229a69cdefb27db9288a4f7ac17eaae95b9bd7a08da2a7476a9ebbe
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8f62dcb130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8f62dbad80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690253110589801394, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcSHePk7uTLdZGxQ/cSHePk7uTLdZGxQ/cSHePk7uTLdZGxQ/cSHePk7uTLdZGxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACWQovoNnuL69tIu/9EfPv8oriT6q68w/1ROpv7m+gj3MMbK/IFHZv2pFkb/wyZm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABxId4+Tu5Mt1kbFD92Vvc7fyzKuPzDJTtxId4+Tu5Mt1kbFD92Vvc7fyzKuPzDJTtxId4+Tu5Mt1kbFD92Vvc7fyzKuPzDJTtxId4+Tu5Mt1kbFD92Vvc7fyzKuPzDJTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 4.3384889e-01 -1.2214832e-05 5.7854229e-01]\n [ 4.3384889e-01 -1.2214832e-05 5.7854229e-01]\n [ 4.3384889e-01 -1.2214832e-05 5.7854229e-01]\n [ 4.3384889e-01 -1.2214832e-05 5.7854229e-01]]", "desired_goal": "[[-0.1644441 -0.36016473 -1.0914532 ]\n [-1.6193833 0.2679122 1.6009419 ]\n [-1.3209177 0.06384034 -1.3921447 ]\n [-1.6977882 -1.1349308 -1.2014751 ]]", "observation": "[[ 4.3384889e-01 -1.2214832e-05 5.7854229e-01 7.5481487e-03\n -9.6403986e-05 2.5293818e-03]\n [ 4.3384889e-01 -1.2214832e-05 5.7854229e-01 7.5481487e-03\n -9.6403986e-05 2.5293818e-03]\n [ 4.3384889e-01 -1.2214832e-05 5.7854229e-01 7.5481487e-03\n -9.6403986e-05 2.5293818e-03]\n [ 4.3384889e-01 -1.2214832e-05 5.7854229e-01 7.5481487e-03\n -9.6403986e-05 2.5293818e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANiLJPRPguz0TEJY+NSb2vYZcub2cT10+GyIKPrTUgj3r918+0RM0PBA2YT2ZUT4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09820978 0.09173598 0.2930914 ]\n [-0.12019006 -0.09050851 0.216124 ]\n [ 0.13489573 0.06388226 0.21871917]\n [ 0.01099105 0.0549832 0.18585815]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFHZR9MAHAsCUhpRSlIwBbJRLMowBdJRHQKoDyydFvyd1fZQoaAZoCWgPQwgGDmjpChYMwJSGlFKUaBVLMmgWR0CqA43O4XoDdX2UKGgGaAloD0MI4UOJljweCsCUhpRSlGgVSzJoFkdAqgNQCCBf8nV9lChoBmgJaA9DCNmz5zI1qRDAlIaUUpRoFUsyaBZHQKoDBxnWatt1fZQoaAZoCWgPQwj/BBcrajAHwJSGlFKUaBVLMmgWR0CqBOYD1XeWdX2UKGgGaAloD0MIgEkqU8zB+L+UhpRSlGgVSzJoFkdAqgSoxN7BwnV9lChoBmgJaA9DCA/SU+QQYRHAlIaUUpRoFUsyaBZHQKoEa2jwhGJ1fZQoaAZoCWgPQwhAh/nyAuwHwJSGlFKUaBVLMmgWR0CqBCLFGXoldX2UKGgGaAloD0MINxjqsMLtB8CUhpRSlGgVSzJoFkdAqgZICnxaxHV9lChoBmgJaA9DCOPEVzuKUwHAlIaUUpRoFUsyaBZHQKoGCvlEJBx1fZQoaAZoCWgPQwgjTFEujX8VwJSGlFKUaBVLMmgWR0CqBc13Ux20dX2UKGgGaAloD0MILzTXaaSl/7+UhpRSlGgVSzJoFkdAqgWEuctoSXV9lChoBmgJaA9DCAc/cQD9ngfAlIaUUpRoFUsyaBZHQKoHbNTtLL91fZQoaAZoCWgPQwgvvmiPF5ILwJSGlFKUaBVLMmgWR0CqBy9hqj8DdX2UKGgGaAloD0MIUYaqmEpfC8CUhpRSlGgVSzJoFkdAqgbxmGucMHV9lChoBmgJaA9DCCl4CrlSD/a/lIaUUpRoFUsyaBZHQKoGqMnZ00Z1fZQoaAZoCWgPQwiVYdwNolUTwJSGlFKUaBVLMmgWR0CqCLRyOq//dX2UKGgGaAloD0MIJa5jXHExAMCUhpRSlGgVSzJoFkdAqgh3DNyHVXV9lChoBmgJaA9DCKDDfHkBRhHAlIaUUpRoFUsyaBZHQKoIOZl4C6p1fZQoaAZoCWgPQwjHLlG9NQAQwJSGlFKUaBVLMmgWR0CqB/Ds+mm+dX2UKGgGaAloD0MIwaikTkCzBMCUhpRSlGgVSzJoFkdAqgpYaHbh33V9lChoBmgJaA9DCFESEmkb//2/lIaUUpRoFUsyaBZHQKoKG3ZPEbZ1fZQoaAZoCWgPQwjcoWEx6voOwJSGlFKUaBVLMmgWR0CqCd5lOGj9dX2UKGgGaAloD0MIBFjk1w8RCcCUhpRSlGgVSzJoFkdAqgmV/2Cd0HV9lChoBmgJaA9DCDXrjO+LCw/AlIaUUpRoFUsyaBZHQKoMN+6y0KJ1fZQoaAZoCWgPQwgCvAUSFP8IwJSGlFKUaBVLMmgWR0CqC/sju8brdX2UKGgGaAloD0MIueNNfotOAcCUhpRSlGgVSzJoFkdAqgu+CXhOxnV9lChoBmgJaA9DCMITev1J7BDAlIaUUpRoFUsyaBZHQKoLdiRW9151fZQoaAZoCWgPQwhwzojS3mAOwJSGlFKUaBVLMmgWR0CqDhCd8RcvdX2UKGgGaAloD0MI/wdYq3Z9E8CUhpRSlGgVSzJoFkdAqg3T6N2ki3V9lChoBmgJaA9DCNeGinH+RgzAlIaUUpRoFUsyaBZHQKoNlvWpZOl1fZQoaAZoCWgPQwh+GYwRieIDwJSGlFKUaBVLMmgWR0CqDU5YxL00dX2UKGgGaAloD0MIH4XrUbiOEMCUhpRSlGgVSzJoFkdAqhA0n3L3bnV9lChoBmgJaA9DCOaxZmSQ2wbAlIaUUpRoFUsyaBZHQKoP+KHfuTl1fZQoaAZoCWgPQwjylNV0PdERwJSGlFKUaBVLMmgWR0CqD7wiqyWzdX2UKGgGaAloD0MImBk2yvoN/b+UhpRSlGgVSzJoFkdAqg9z37DVIHV9lChoBmgJaA9DCJqXw+47hv+/lIaUUpRoFUsyaBZHQKoRl04iosJ1fZQoaAZoCWgPQwgVWABTBg7/v5SGlFKUaBVLMmgWR0CqEVmICU5ddX2UKGgGaAloD0MI0IB6M2o+/r+UhpRSlGgVSzJoFkdAqhEbrPdEcHV9lChoBmgJaA9DCNOHLqhvWf2/lIaUUpRoFUsyaBZHQKoQ0oNNJvp1fZQoaAZoCWgPQwgfhlYnZ2gIwJSGlFKUaBVLMmgWR0CqEtV2A5JcdX2UKGgGaAloD0MIgGWlSSmoA8CUhpRSlGgVSzJoFkdAqhKYUQCjlHV9lChoBmgJaA9DCDPEsS5uowXAlIaUUpRoFUsyaBZHQKoSWuq3mV91fZQoaAZoCWgPQwgoSddMvpkGwJSGlFKUaBVLMmgWR0CqEhILgGbDdX2UKGgGaAloD0MImDEFa5ztBsCUhpRSlGgVSzJoFkdAqhP9MyrPt3V9lChoBmgJaA9DCGB4Jclz3QDAlIaUUpRoFUsyaBZHQKoTv2+wkgR1fZQoaAZoCWgPQwgEqn8QyXAIwJSGlFKUaBVLMmgWR0CqE4Gr8zhxdX2UKGgGaAloD0MIcqQzMPKSCMCUhpRSlGgVSzJoFkdAqhM4sZpBX3V9lChoBmgJaA9DCP0VMlcGVf6/lIaUUpRoFUsyaBZHQKoVBVVghKV1fZQoaAZoCWgPQwh8m/7sRwr8v5SGlFKUaBVLMmgWR0CqFMg/s3Q2dX2UKGgGaAloD0MIIQN5dvn2D8CUhpRSlGgVSzJoFkdAqhSK2jO9nXV9lChoBmgJaA9DCH5xqUpbPAPAlIaUUpRoFUsyaBZHQKoUQpvP1L91fZQoaAZoCWgPQwhPWOIBZTMDwJSGlFKUaBVLMmgWR0CqFmXeWOZLdX2UKGgGaAloD0MIB7Xf2okSBMCUhpRSlGgVSzJoFkdAqhYokgOjI3V9lChoBmgJaA9DCPG6fsFu+ALAlIaUUpRoFUsyaBZHQKoV6tbLU1B1fZQoaAZoCWgPQwghAaPLm2MKwJSGlFKUaBVLMmgWR0CqFaJEH+qBdX2UKGgGaAloD0MI8PeL2ZL1BcCUhpRSlGgVSzJoFkdAqheH2f02+HV9lChoBmgJaA9DCJOsw9FV+gHAlIaUUpRoFUsyaBZHQKoXSmu1WsB1fZQoaAZoCWgPQwgFoidlUmMDwJSGlFKUaBVLMmgWR0CqFwzXJ5midX2UKGgGaAloD0MIZHWr56T3CcCUhpRSlGgVSzJoFkdAqhbDwnYxtnV9lChoBmgJaA9DCOaw+47hkQzAlIaUUpRoFUsyaBZHQKoYyXyiEg51fZQoaAZoCWgPQwiQEVDhCBL7v5SGlFKUaBVLMmgWR0CqGIxlxwQ2dX2UKGgGaAloD0MII4PcRZgi/7+UhpRSlGgVSzJoFkdAqhhPQtz0YnV9lChoBmgJaA9DCBfUt8zpcgXAlIaUUpRoFUsyaBZHQKoYBze40/J1fZQoaAZoCWgPQwjh05y8yCQBwJSGlFKUaBVLMmgWR0CqGhvk7wKCdX2UKGgGaAloD0MIvjCZKhhV/L+UhpRSlGgVSzJoFkdAqhneilBQenV9lChoBmgJaA9DCP36ITZY+PK/lIaUUpRoFUsyaBZHQKoZoOCoS+R1fZQoaAZoCWgPQwgaMbPPY1T+v5SGlFKUaBVLMmgWR0CqGVf5+H8CdX2UKGgGaAloD0MInRN7aB8r/r+UhpRSlGgVSzJoFkdAqhs76P8ye3V9lChoBmgJaA9DCIEiFjHsMPy/lIaUUpRoFUsyaBZHQKoa/n7Hhjx1fZQoaAZoCWgPQwhUVtP1RBcEwJSGlFKUaBVLMmgWR0CqGsDLjghsdX2UKGgGaAloD0MIH5268lkeAcCUhpRSlGgVSzJoFkdAqhp3wPRRdnV9lChoBmgJaA9DCFGiJY+nJQ7AlIaUUpRoFUsyaBZHQKocjxp+MIh1fZQoaAZoCWgPQwhblxqhn9kRwJSGlFKUaBVLMmgWR0CqHFG47Rv4dX2UKGgGaAloD0MIzhsnhXlvAMCUhpRSlGgVSzJoFkdAqhwUGu9vj3V9lChoBmgJaA9DCICfceFASPW/lIaUUpRoFUsyaBZHQKoby0waisZ1fZQoaAZoCWgPQwhhpYKKqp/+v5SGlFKUaBVLMmgWR0CqHchib2DhdX2UKGgGaAloD0MIrRiuDoD4/L+UhpRSlGgVSzJoFkdAqh2LKeTV2HV9lChoBmgJaA9DCNcYdELoQALAlIaUUpRoFUsyaBZHQKodTW+XZ5B1fZQoaAZoCWgPQwgsLo7KTRQEwJSGlFKUaBVLMmgWR0CqHQRNATqTdX2UKGgGaAloD0MIxqLp7GTw+7+UhpRSlGgVSzJoFkdAqh7gPwuuinV9lChoBmgJaA9DCPYHym37fgfAlIaUUpRoFUsyaBZHQKoeoyY5T611fZQoaAZoCWgPQwgpstZQag8EwJSGlFKUaBVLMmgWR0CqHmWfkFOgdX2UKGgGaAloD0MItaSjHMxm/7+UhpRSlGgVSzJoFkdAqh4c0Nz8xnV9lChoBmgJaA9DCO7QsBh1DQ3AlIaUUpRoFUsyaBZHQKogREAo5Px1fZQoaAZoCWgPQwju6H+5Fk0HwJSGlFKUaBVLMmgWR0CqIAbLU1AJdX2UKGgGaAloD0MI9YQlHlCWCMCUhpRSlGgVSzJoFkdAqh/JNXYDknV9lChoBmgJaA9DCB9Hc2TlVw/AlIaUUpRoFUsyaBZHQKofgGHHmzV1fZQoaAZoCWgPQwiD9urjoa//v5SGlFKUaBVLMmgWR0CqIWP1UVBVdX2UKGgGaAloD0MI39xfPe6bCsCUhpRSlGgVSzJoFkdAqiEmh7E5yXV9lChoBmgJaA9DCEFn0qbqHvq/lIaUUpRoFUsyaBZHQKog6OsDGLl1fZQoaAZoCWgPQwhgd7rzxDPwv5SGlFKUaBVLMmgWR0CqIJ/G+9J0dX2UKGgGaAloD0MI7j1cctypBcCUhpRSlGgVSzJoFkdAqiKbZrYXf3V9lChoBmgJaA9DCOiiIeNR+hDAlIaUUpRoFUsyaBZHQKoiXjPv8ZV1fZQoaAZoCWgPQwj7BFCMLLkPwJSGlFKUaBVLMmgWR0CqIiCQkonbdX2UKGgGaAloD0MIu9HHfECg/L+UhpRSlGgVSzJoFkdAqiHXu7YkFHV9lChoBmgJaA9DCA8Ni1HX2u+/lIaUUpRoFUsyaBZHQKoj1n6Eal11fZQoaAZoCWgPQwhFhH8RNCYBwJSGlFKUaBVLMmgWR0CqI5kiUxEfdX2UKGgGaAloD0MIZi/bTlujD8CUhpRSlGgVSzJoFkdAqiNbp1RtQHV9lChoBmgJaA9DCDChgsMLYv+/lIaUUpRoFUsyaBZHQKojEsfaHsV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (584 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.2847139549441637, "std_reward": 0.9082574802585666, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-25T03:49:03.559056"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7af1581f6b1e488837ab764c19407850fae2b79aa1381b533c36c0ef0e2f23a
3
+ size 2387