--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-uncased-v10-ES-ner results: [] --- # bert-large-uncased-v10-ES-ner This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5047 - Precision: 0.6503 - Recall: 0.7107 - F1: 0.6792 - Accuracy: 0.9157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4056 | 1.75 | 500 | 0.3016 | 0.6128 | 0.6736 | 0.6417 | 0.9118 | | 0.1603 | 3.5 | 1000 | 0.3561 | 0.6350 | 0.6756 | 0.6547 | 0.9105 | | 0.0727 | 5.24 | 1500 | 0.4252 | 0.6654 | 0.7149 | 0.6892 | 0.9163 | | 0.0341 | 6.99 | 2000 | 0.4574 | 0.6542 | 0.6839 | 0.6687 | 0.9124 | | 0.0168 | 8.74 | 2500 | 0.5047 | 0.6503 | 0.7107 | 0.6792 | 0.9157 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2