--- license: apache-2.0 tags: - generated_from_trainer datasets: - govreport-summarization metrics: - rouge model-index: - name: led-large-16384-govreport results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: govreport-summarization type: govreport-summarization config: document split: validation args: document metrics: - name: Rouge1 type: rouge value: 0.5398781387812484 --- # led-large-16384-govreport This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the govreport-summarization dataset. It achieves the following results on the evaluation set: - Loss: 1.7442 - Rouge1: 0.5399 - Rouge2: 0.2253 - Rougel: 0.2582 - Rougelsum: 0.2582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 1.8152 | 3.65 | 500 | 1.7956 | 0.5095 | 0.2040 | 0.2382 | 0.2381 | | 1.6981 | 3.66 | 1000 | 1.7624 | 0.5194 | 0.2107 | 0.2437 | 0.2437 | | 1.7048 | 5.49 | 1500 | 1.7448 | 0.5253 | 0.2149 | 0.2467 | 0.2467 | | 1.6469 | 7.32 | 2000 | 1.7416 | 0.5299 | 0.2177 | 0.2499 | 0.2500 | | 1.6465 | 9.15 | 2500 | 1.7318 | 0.5299 | 0.2160 | 0.2476 | 0.2478 | | 1.578 | 10.98 | 3000 | 1.7254 | 0.5321 | 0.2192 | 0.2529 | 0.2530 | | 1.5631 | 12.81 | 3500 | 1.7189 | 0.5309 | 0.2170 | 0.2520 | 0.2520 | | 1.5641 | 14.63 | 4000 | 1.7152 | 0.5343 | 0.2198 | 0.2550 | 0.2550 | | 1.4753 | 16.48 | 4500 | 1.7181 | 0.5305 | 0.2179 | 0.2539 | 0.2542 | | 1.4792 | 18.3 | 5000 | 1.7152 | 0.5375 | 0.2258 | 0.2586 | 0.2588 | | 1.4206 | 20.13 | 5500 | 1.7142 | 0.5366 | 0.2216 | 0.2555 | 0.2556 | | 1.4273 | 21.96 | 6000 | 1.7128 | 0.5364 | 0.2232 | 0.2573 | 0.2573 | | 1.4078 | 23.78 | 6500 | 1.7114 | 0.5344 | 0.2200 | 0.2562 | 0.2563 | | 1.355 | 25.61 | 7000 | 1.7153 | 0.5354 | 0.2212 | 0.2564 | 0.2564 | | 1.409 | 27.44 | 7500 | 1.7119 | 0.5363 | 0.2217 | 0.2568 | 0.2570 | | 1.3817 | 29.26 | 8000 | 1.7166 | 0.5369 | 0.2229 | 0.2582 | 0.2582 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.10.0+cu102 - Datasets 2.13.1 - Tokenizers 0.13.3