--- license: apache-2.0 tags: - generated_from_trainer datasets: - govreport-summarization metrics: - rouge model-index: - name: led-large-16384-govreport results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: govreport-summarization type: govreport-summarization config: document split: validation args: document metrics: - name: Rouge1 type: rouge value: 0.5194151586540673 --- # led-large-16384-govreport This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the govreport-summarization dataset. It achieves the following results on the evaluation set: - Loss: 1.7624 - Rouge1: 0.5194 - Rouge2: 0.2107 - Rougel: 0.2437 - Rougelsum: 0.2437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 1.8152 | 3.65 | 500 | 1.7956 | 0.5095 | 0.2040 | 0.2382 | 0.2381 | | 1.6981 | 3.66 | 1000 | 1.7624 | 0.5194 | 0.2107 | 0.2437 | 0.2437 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.10.0+cu102 - Datasets 2.13.1 - Tokenizers 0.13.3