--- license: apache-2.0 base_model: - Qwen/Qwen2.5-0.5B-Instruct - Qwen/Qwen2.5-Coder-0.5B - funnyPhani/Qwen-2.5-0.5B-MATH - caelancooper/Qwen2.5-0.5B-business - KingNish/Qwen2.5-0.5b-Test-ft tags: - moe - frankenmoe - merge - mergekit - lazymergekit - Qwen/Qwen2.5-0.5B-Instruct - Qwen/Qwen2.5-Coder-0.5B - funnyPhani/Qwen-2.5-0.5B-MATH - caelancooper/Qwen2.5-0.5B-business - KingNish/Qwen2.5-0.5b-Test-ft --- # LazyMergekit-Qwen2.5-0.5B-Mixtral LazyMergekit-Qwen2.5-0.5B-Mixtral is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) * [Qwen/Qwen2.5-Coder-0.5B](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B) * [funnyPhani/Qwen-2.5-0.5B-MATH](https://huggingface.co/funnyPhani/Qwen-2.5-0.5B-MATH) * [caelancooper/Qwen2.5-0.5B-business](https://huggingface.co/caelancooper/Qwen2.5-0.5B-business) * [KingNish/Qwen2.5-0.5b-Test-ft](https://huggingface.co/KingNish/Qwen2.5-0.5b-Test-ft) ## 🧩 Configuration ```yaml base_model: Qwen/Qwen2.5-0.5B-Instruct # Base model for shared layers gate_mode: hidden # Use hidden representations for router initialization dtype: float16 # Data type for the merged model experts: - source_model: Qwen/Qwen2.5-0.5B-Instruct positive_prompts: - "chat" - "assistant" - "tell me" - "explain" - "I want" - source_model: Qwen/Qwen2.5-Coder-0.5B positive_prompts: - "code" - "python" - "javascript" - "programming" - "algorithm" - source_model: funnyPhani/Qwen-2.5-0.5B-MATH positive_prompts: - "math" - "mathematics" - "solve" - "count" - "reason" - source_model: caelancooper/Qwen2.5-0.5B-business positive_prompts: - "business" - "finance" - "market" - "strategy" - "analysis" - source_model: KingNish/Qwen2.5-0.5b-Test-ft positive_prompts: ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Xiaojian9992024/LazyMergekit-Qwen2.5-0.5B-Mixtral" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```