--- base_model: hustvl/yolos-tiny library_name: transformers.js --- https://huggingface.co/hustvl/yolos-tiny with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` **Example:** Perform object detection with `Xenova/yolos-tiny`. ```js import { pipeline } from "@huggingface/transformers"; const detector = await pipeline("object-detection", "Xenova/yolos-tiny"); const image = "https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg"; const output = await detector(image, { threshold: 0.9 }); console.log(output); ```
Example output ``` [ { score: 0.9921281933784485, label: "remote", box: { xmin: 32, ymin: 78, xmax: 185, ymax: 117 }, }, { score: 0.9884883165359497, label: "remote", box: { xmin: 324, ymin: 82, xmax: 376, ymax: 191 }, }, { score: 0.9197800159454346, label: "cat", box: { xmin: 5, ymin: 56, xmax: 321, ymax: 469 }, }, { score: 0.9300552606582642, label: "cat", box: { xmin: 332, ymin: 25, xmax: 638, ymax: 369 }, }, ] ```
--- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).