Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +7 -0
- README.md +3308 -0
- config.json +35 -0
- config_sentence_transformers.json +7 -0
- de_evaluation_results.png +0 -0
- merges.txt +0 -0
- modules.json +14 -0
- onnx/model.onnx +3 -0
- onnx/model_quantized.onnx +3 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +5 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
| 7 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,3308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- feature-extraction
|
| 5 |
+
- sentence-similarity
|
| 6 |
+
- mteb
|
| 7 |
+
language:
|
| 8 |
+
- de
|
| 9 |
+
- en
|
| 10 |
+
inference: false
|
| 11 |
+
license: apache-2.0
|
| 12 |
+
model-index:
|
| 13 |
+
- name: jina-embeddings-v2-base-de
|
| 14 |
+
results:
|
| 15 |
+
- task:
|
| 16 |
+
type: Classification
|
| 17 |
+
dataset:
|
| 18 |
+
type: mteb/amazon_counterfactual
|
| 19 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
| 20 |
+
config: en
|
| 21 |
+
split: test
|
| 22 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
| 23 |
+
metrics:
|
| 24 |
+
- type: accuracy
|
| 25 |
+
value: 73.76119402985076
|
| 26 |
+
- type: ap
|
| 27 |
+
value: 35.99577188521176
|
| 28 |
+
- type: f1
|
| 29 |
+
value: 67.50397431543269
|
| 30 |
+
- task:
|
| 31 |
+
type: Classification
|
| 32 |
+
dataset:
|
| 33 |
+
type: mteb/amazon_counterfactual
|
| 34 |
+
name: MTEB AmazonCounterfactualClassification (de)
|
| 35 |
+
config: de
|
| 36 |
+
split: test
|
| 37 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
| 38 |
+
metrics:
|
| 39 |
+
- type: accuracy
|
| 40 |
+
value: 68.9186295503212
|
| 41 |
+
- type: ap
|
| 42 |
+
value: 79.73307115840507
|
| 43 |
+
- type: f1
|
| 44 |
+
value: 66.66245744831339
|
| 45 |
+
- task:
|
| 46 |
+
type: Classification
|
| 47 |
+
dataset:
|
| 48 |
+
type: mteb/amazon_polarity
|
| 49 |
+
name: MTEB AmazonPolarityClassification
|
| 50 |
+
config: default
|
| 51 |
+
split: test
|
| 52 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
| 53 |
+
metrics:
|
| 54 |
+
- type: accuracy
|
| 55 |
+
value: 77.52215
|
| 56 |
+
- type: ap
|
| 57 |
+
value: 71.85051037177416
|
| 58 |
+
- type: f1
|
| 59 |
+
value: 77.4171096157774
|
| 60 |
+
- task:
|
| 61 |
+
type: Classification
|
| 62 |
+
dataset:
|
| 63 |
+
type: mteb/amazon_reviews_multi
|
| 64 |
+
name: MTEB AmazonReviewsClassification (en)
|
| 65 |
+
config: en
|
| 66 |
+
split: test
|
| 67 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
| 68 |
+
metrics:
|
| 69 |
+
- type: accuracy
|
| 70 |
+
value: 38.498
|
| 71 |
+
- type: f1
|
| 72 |
+
value: 38.058193386555956
|
| 73 |
+
- task:
|
| 74 |
+
type: Classification
|
| 75 |
+
dataset:
|
| 76 |
+
type: mteb/amazon_reviews_multi
|
| 77 |
+
name: MTEB AmazonReviewsClassification (de)
|
| 78 |
+
config: de
|
| 79 |
+
split: test
|
| 80 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
| 81 |
+
metrics:
|
| 82 |
+
- type: accuracy
|
| 83 |
+
value: 37.717999999999996
|
| 84 |
+
- type: f1
|
| 85 |
+
value: 37.22674371574757
|
| 86 |
+
- task:
|
| 87 |
+
type: Retrieval
|
| 88 |
+
dataset:
|
| 89 |
+
type: arguana
|
| 90 |
+
name: MTEB ArguAna
|
| 91 |
+
config: default
|
| 92 |
+
split: test
|
| 93 |
+
revision: None
|
| 94 |
+
metrics:
|
| 95 |
+
- type: map_at_1
|
| 96 |
+
value: 25.319999999999997
|
| 97 |
+
- type: map_at_10
|
| 98 |
+
value: 40.351
|
| 99 |
+
- type: map_at_100
|
| 100 |
+
value: 41.435
|
| 101 |
+
- type: map_at_1000
|
| 102 |
+
value: 41.443000000000005
|
| 103 |
+
- type: map_at_3
|
| 104 |
+
value: 35.266
|
| 105 |
+
- type: map_at_5
|
| 106 |
+
value: 37.99
|
| 107 |
+
- type: mrr_at_1
|
| 108 |
+
value: 25.746999999999996
|
| 109 |
+
- type: mrr_at_10
|
| 110 |
+
value: 40.515
|
| 111 |
+
- type: mrr_at_100
|
| 112 |
+
value: 41.606
|
| 113 |
+
- type: mrr_at_1000
|
| 114 |
+
value: 41.614000000000004
|
| 115 |
+
- type: mrr_at_3
|
| 116 |
+
value: 35.42
|
| 117 |
+
- type: mrr_at_5
|
| 118 |
+
value: 38.112
|
| 119 |
+
- type: ndcg_at_1
|
| 120 |
+
value: 25.319999999999997
|
| 121 |
+
- type: ndcg_at_10
|
| 122 |
+
value: 49.332
|
| 123 |
+
- type: ndcg_at_100
|
| 124 |
+
value: 53.909
|
| 125 |
+
- type: ndcg_at_1000
|
| 126 |
+
value: 54.089
|
| 127 |
+
- type: ndcg_at_3
|
| 128 |
+
value: 38.705
|
| 129 |
+
- type: ndcg_at_5
|
| 130 |
+
value: 43.606
|
| 131 |
+
- type: precision_at_1
|
| 132 |
+
value: 25.319999999999997
|
| 133 |
+
- type: precision_at_10
|
| 134 |
+
value: 7.831
|
| 135 |
+
- type: precision_at_100
|
| 136 |
+
value: 0.9820000000000001
|
| 137 |
+
- type: precision_at_1000
|
| 138 |
+
value: 0.1
|
| 139 |
+
- type: precision_at_3
|
| 140 |
+
value: 16.24
|
| 141 |
+
- type: precision_at_5
|
| 142 |
+
value: 12.119
|
| 143 |
+
- type: recall_at_1
|
| 144 |
+
value: 25.319999999999997
|
| 145 |
+
- type: recall_at_10
|
| 146 |
+
value: 78.307
|
| 147 |
+
- type: recall_at_100
|
| 148 |
+
value: 98.222
|
| 149 |
+
- type: recall_at_1000
|
| 150 |
+
value: 99.57300000000001
|
| 151 |
+
- type: recall_at_3
|
| 152 |
+
value: 48.72
|
| 153 |
+
- type: recall_at_5
|
| 154 |
+
value: 60.597
|
| 155 |
+
- task:
|
| 156 |
+
type: Clustering
|
| 157 |
+
dataset:
|
| 158 |
+
type: mteb/arxiv-clustering-p2p
|
| 159 |
+
name: MTEB ArxivClusteringP2P
|
| 160 |
+
config: default
|
| 161 |
+
split: test
|
| 162 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
| 163 |
+
metrics:
|
| 164 |
+
- type: v_measure
|
| 165 |
+
value: 41.43100588255654
|
| 166 |
+
- task:
|
| 167 |
+
type: Clustering
|
| 168 |
+
dataset:
|
| 169 |
+
type: mteb/arxiv-clustering-s2s
|
| 170 |
+
name: MTEB ArxivClusteringS2S
|
| 171 |
+
config: default
|
| 172 |
+
split: test
|
| 173 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
| 174 |
+
metrics:
|
| 175 |
+
- type: v_measure
|
| 176 |
+
value: 32.08988904593667
|
| 177 |
+
- task:
|
| 178 |
+
type: Reranking
|
| 179 |
+
dataset:
|
| 180 |
+
type: mteb/askubuntudupquestions-reranking
|
| 181 |
+
name: MTEB AskUbuntuDupQuestions
|
| 182 |
+
config: default
|
| 183 |
+
split: test
|
| 184 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
| 185 |
+
metrics:
|
| 186 |
+
- type: map
|
| 187 |
+
value: 60.55514765595906
|
| 188 |
+
- type: mrr
|
| 189 |
+
value: 73.51393835465858
|
| 190 |
+
- task:
|
| 191 |
+
type: STS
|
| 192 |
+
dataset:
|
| 193 |
+
type: mteb/biosses-sts
|
| 194 |
+
name: MTEB BIOSSES
|
| 195 |
+
config: default
|
| 196 |
+
split: test
|
| 197 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
| 198 |
+
metrics:
|
| 199 |
+
- type: cos_sim_pearson
|
| 200 |
+
value: 79.6723823121172
|
| 201 |
+
- type: cos_sim_spearman
|
| 202 |
+
value: 76.90596922214986
|
| 203 |
+
- type: euclidean_pearson
|
| 204 |
+
value: 77.87910737957918
|
| 205 |
+
- type: euclidean_spearman
|
| 206 |
+
value: 76.66319260598262
|
| 207 |
+
- type: manhattan_pearson
|
| 208 |
+
value: 77.37039493457965
|
| 209 |
+
- type: manhattan_spearman
|
| 210 |
+
value: 76.09872191280964
|
| 211 |
+
- task:
|
| 212 |
+
type: BitextMining
|
| 213 |
+
dataset:
|
| 214 |
+
type: mteb/bucc-bitext-mining
|
| 215 |
+
name: MTEB BUCC (de-en)
|
| 216 |
+
config: de-en
|
| 217 |
+
split: test
|
| 218 |
+
revision: d51519689f32196a32af33b075a01d0e7c51e252
|
| 219 |
+
metrics:
|
| 220 |
+
- type: accuracy
|
| 221 |
+
value: 98.97703549060543
|
| 222 |
+
- type: f1
|
| 223 |
+
value: 98.86569241475296
|
| 224 |
+
- type: precision
|
| 225 |
+
value: 98.81002087682673
|
| 226 |
+
- type: recall
|
| 227 |
+
value: 98.97703549060543
|
| 228 |
+
- task:
|
| 229 |
+
type: Classification
|
| 230 |
+
dataset:
|
| 231 |
+
type: mteb/banking77
|
| 232 |
+
name: MTEB Banking77Classification
|
| 233 |
+
config: default
|
| 234 |
+
split: test
|
| 235 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
| 236 |
+
metrics:
|
| 237 |
+
- type: accuracy
|
| 238 |
+
value: 83.93506493506493
|
| 239 |
+
- type: f1
|
| 240 |
+
value: 83.91014949949302
|
| 241 |
+
- task:
|
| 242 |
+
type: Clustering
|
| 243 |
+
dataset:
|
| 244 |
+
type: mteb/biorxiv-clustering-p2p
|
| 245 |
+
name: MTEB BiorxivClusteringP2P
|
| 246 |
+
config: default
|
| 247 |
+
split: test
|
| 248 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
| 249 |
+
metrics:
|
| 250 |
+
- type: v_measure
|
| 251 |
+
value: 34.970675877585144
|
| 252 |
+
- task:
|
| 253 |
+
type: Clustering
|
| 254 |
+
dataset:
|
| 255 |
+
type: mteb/biorxiv-clustering-s2s
|
| 256 |
+
name: MTEB BiorxivClusteringS2S
|
| 257 |
+
config: default
|
| 258 |
+
split: test
|
| 259 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
| 260 |
+
metrics:
|
| 261 |
+
- type: v_measure
|
| 262 |
+
value: 28.779230269190954
|
| 263 |
+
- task:
|
| 264 |
+
type: Clustering
|
| 265 |
+
dataset:
|
| 266 |
+
type: slvnwhrl/blurbs-clustering-p2p
|
| 267 |
+
name: MTEB BlurbsClusteringP2P
|
| 268 |
+
config: default
|
| 269 |
+
split: test
|
| 270 |
+
revision: a2dd5b02a77de3466a3eaa98ae586b5610314496
|
| 271 |
+
metrics:
|
| 272 |
+
- type: v_measure
|
| 273 |
+
value: 35.490175601567216
|
| 274 |
+
- task:
|
| 275 |
+
type: Clustering
|
| 276 |
+
dataset:
|
| 277 |
+
type: slvnwhrl/blurbs-clustering-s2s
|
| 278 |
+
name: MTEB BlurbsClusteringS2S
|
| 279 |
+
config: default
|
| 280 |
+
split: test
|
| 281 |
+
revision: 9bfff9a7f8f6dc6ffc9da71c48dd48b68696471d
|
| 282 |
+
metrics:
|
| 283 |
+
- type: v_measure
|
| 284 |
+
value: 16.16638280560168
|
| 285 |
+
- task:
|
| 286 |
+
type: Retrieval
|
| 287 |
+
dataset:
|
| 288 |
+
type: BeIR/cqadupstack
|
| 289 |
+
name: MTEB CQADupstackAndroidRetrieval
|
| 290 |
+
config: default
|
| 291 |
+
split: test
|
| 292 |
+
revision: None
|
| 293 |
+
metrics:
|
| 294 |
+
- type: map_at_1
|
| 295 |
+
value: 30.830999999999996
|
| 296 |
+
- type: map_at_10
|
| 297 |
+
value: 41.355
|
| 298 |
+
- type: map_at_100
|
| 299 |
+
value: 42.791000000000004
|
| 300 |
+
- type: map_at_1000
|
| 301 |
+
value: 42.918
|
| 302 |
+
- type: map_at_3
|
| 303 |
+
value: 38.237
|
| 304 |
+
- type: map_at_5
|
| 305 |
+
value: 40.066
|
| 306 |
+
- type: mrr_at_1
|
| 307 |
+
value: 38.484
|
| 308 |
+
- type: mrr_at_10
|
| 309 |
+
value: 47.593
|
| 310 |
+
- type: mrr_at_100
|
| 311 |
+
value: 48.388
|
| 312 |
+
- type: mrr_at_1000
|
| 313 |
+
value: 48.439
|
| 314 |
+
- type: mrr_at_3
|
| 315 |
+
value: 45.279
|
| 316 |
+
- type: mrr_at_5
|
| 317 |
+
value: 46.724
|
| 318 |
+
- type: ndcg_at_1
|
| 319 |
+
value: 38.484
|
| 320 |
+
- type: ndcg_at_10
|
| 321 |
+
value: 47.27
|
| 322 |
+
- type: ndcg_at_100
|
| 323 |
+
value: 52.568000000000005
|
| 324 |
+
- type: ndcg_at_1000
|
| 325 |
+
value: 54.729000000000006
|
| 326 |
+
- type: ndcg_at_3
|
| 327 |
+
value: 43.061
|
| 328 |
+
- type: ndcg_at_5
|
| 329 |
+
value: 45.083
|
| 330 |
+
- type: precision_at_1
|
| 331 |
+
value: 38.484
|
| 332 |
+
- type: precision_at_10
|
| 333 |
+
value: 8.927
|
| 334 |
+
- type: precision_at_100
|
| 335 |
+
value: 1.425
|
| 336 |
+
- type: precision_at_1000
|
| 337 |
+
value: 0.19
|
| 338 |
+
- type: precision_at_3
|
| 339 |
+
value: 20.791999999999998
|
| 340 |
+
- type: precision_at_5
|
| 341 |
+
value: 14.85
|
| 342 |
+
- type: recall_at_1
|
| 343 |
+
value: 30.830999999999996
|
| 344 |
+
- type: recall_at_10
|
| 345 |
+
value: 57.87799999999999
|
| 346 |
+
- type: recall_at_100
|
| 347 |
+
value: 80.124
|
| 348 |
+
- type: recall_at_1000
|
| 349 |
+
value: 94.208
|
| 350 |
+
- type: recall_at_3
|
| 351 |
+
value: 45.083
|
| 352 |
+
- type: recall_at_5
|
| 353 |
+
value: 51.154999999999994
|
| 354 |
+
- task:
|
| 355 |
+
type: Retrieval
|
| 356 |
+
dataset:
|
| 357 |
+
type: BeIR/cqadupstack
|
| 358 |
+
name: MTEB CQADupstackEnglishRetrieval
|
| 359 |
+
config: default
|
| 360 |
+
split: test
|
| 361 |
+
revision: None
|
| 362 |
+
metrics:
|
| 363 |
+
- type: map_at_1
|
| 364 |
+
value: 25.782
|
| 365 |
+
- type: map_at_10
|
| 366 |
+
value: 34.492
|
| 367 |
+
- type: map_at_100
|
| 368 |
+
value: 35.521
|
| 369 |
+
- type: map_at_1000
|
| 370 |
+
value: 35.638
|
| 371 |
+
- type: map_at_3
|
| 372 |
+
value: 31.735999999999997
|
| 373 |
+
- type: map_at_5
|
| 374 |
+
value: 33.339
|
| 375 |
+
- type: mrr_at_1
|
| 376 |
+
value: 32.357
|
| 377 |
+
- type: mrr_at_10
|
| 378 |
+
value: 39.965
|
| 379 |
+
- type: mrr_at_100
|
| 380 |
+
value: 40.644000000000005
|
| 381 |
+
- type: mrr_at_1000
|
| 382 |
+
value: 40.695
|
| 383 |
+
- type: mrr_at_3
|
| 384 |
+
value: 37.739
|
| 385 |
+
- type: mrr_at_5
|
| 386 |
+
value: 39.061
|
| 387 |
+
- type: ndcg_at_1
|
| 388 |
+
value: 32.357
|
| 389 |
+
- type: ndcg_at_10
|
| 390 |
+
value: 39.644
|
| 391 |
+
- type: ndcg_at_100
|
| 392 |
+
value: 43.851
|
| 393 |
+
- type: ndcg_at_1000
|
| 394 |
+
value: 46.211999999999996
|
| 395 |
+
- type: ndcg_at_3
|
| 396 |
+
value: 35.675000000000004
|
| 397 |
+
- type: ndcg_at_5
|
| 398 |
+
value: 37.564
|
| 399 |
+
- type: precision_at_1
|
| 400 |
+
value: 32.357
|
| 401 |
+
- type: precision_at_10
|
| 402 |
+
value: 7.344
|
| 403 |
+
- type: precision_at_100
|
| 404 |
+
value: 1.201
|
| 405 |
+
- type: precision_at_1000
|
| 406 |
+
value: 0.168
|
| 407 |
+
- type: precision_at_3
|
| 408 |
+
value: 17.155
|
| 409 |
+
- type: precision_at_5
|
| 410 |
+
value: 12.166
|
| 411 |
+
- type: recall_at_1
|
| 412 |
+
value: 25.782
|
| 413 |
+
- type: recall_at_10
|
| 414 |
+
value: 49.132999999999996
|
| 415 |
+
- type: recall_at_100
|
| 416 |
+
value: 67.24
|
| 417 |
+
- type: recall_at_1000
|
| 418 |
+
value: 83.045
|
| 419 |
+
- type: recall_at_3
|
| 420 |
+
value: 37.021
|
| 421 |
+
- type: recall_at_5
|
| 422 |
+
value: 42.548
|
| 423 |
+
- task:
|
| 424 |
+
type: Retrieval
|
| 425 |
+
dataset:
|
| 426 |
+
type: BeIR/cqadupstack
|
| 427 |
+
name: MTEB CQADupstackGamingRetrieval
|
| 428 |
+
config: default
|
| 429 |
+
split: test
|
| 430 |
+
revision: None
|
| 431 |
+
metrics:
|
| 432 |
+
- type: map_at_1
|
| 433 |
+
value: 35.778999999999996
|
| 434 |
+
- type: map_at_10
|
| 435 |
+
value: 47.038000000000004
|
| 436 |
+
- type: map_at_100
|
| 437 |
+
value: 48.064
|
| 438 |
+
- type: map_at_1000
|
| 439 |
+
value: 48.128
|
| 440 |
+
- type: map_at_3
|
| 441 |
+
value: 44.186
|
| 442 |
+
- type: map_at_5
|
| 443 |
+
value: 45.788000000000004
|
| 444 |
+
- type: mrr_at_1
|
| 445 |
+
value: 41.254000000000005
|
| 446 |
+
- type: mrr_at_10
|
| 447 |
+
value: 50.556999999999995
|
| 448 |
+
- type: mrr_at_100
|
| 449 |
+
value: 51.296
|
| 450 |
+
- type: mrr_at_1000
|
| 451 |
+
value: 51.331
|
| 452 |
+
- type: mrr_at_3
|
| 453 |
+
value: 48.318
|
| 454 |
+
- type: mrr_at_5
|
| 455 |
+
value: 49.619
|
| 456 |
+
- type: ndcg_at_1
|
| 457 |
+
value: 41.254000000000005
|
| 458 |
+
- type: ndcg_at_10
|
| 459 |
+
value: 52.454
|
| 460 |
+
- type: ndcg_at_100
|
| 461 |
+
value: 56.776
|
| 462 |
+
- type: ndcg_at_1000
|
| 463 |
+
value: 58.181000000000004
|
| 464 |
+
- type: ndcg_at_3
|
| 465 |
+
value: 47.713
|
| 466 |
+
- type: ndcg_at_5
|
| 467 |
+
value: 49.997
|
| 468 |
+
- type: precision_at_1
|
| 469 |
+
value: 41.254000000000005
|
| 470 |
+
- type: precision_at_10
|
| 471 |
+
value: 8.464
|
| 472 |
+
- type: precision_at_100
|
| 473 |
+
value: 1.157
|
| 474 |
+
- type: precision_at_1000
|
| 475 |
+
value: 0.133
|
| 476 |
+
- type: precision_at_3
|
| 477 |
+
value: 21.526
|
| 478 |
+
- type: precision_at_5
|
| 479 |
+
value: 14.696000000000002
|
| 480 |
+
- type: recall_at_1
|
| 481 |
+
value: 35.778999999999996
|
| 482 |
+
- type: recall_at_10
|
| 483 |
+
value: 64.85300000000001
|
| 484 |
+
- type: recall_at_100
|
| 485 |
+
value: 83.98400000000001
|
| 486 |
+
- type: recall_at_1000
|
| 487 |
+
value: 94.18299999999999
|
| 488 |
+
- type: recall_at_3
|
| 489 |
+
value: 51.929
|
| 490 |
+
- type: recall_at_5
|
| 491 |
+
value: 57.666
|
| 492 |
+
- task:
|
| 493 |
+
type: Retrieval
|
| 494 |
+
dataset:
|
| 495 |
+
type: BeIR/cqadupstack
|
| 496 |
+
name: MTEB CQADupstackGisRetrieval
|
| 497 |
+
config: default
|
| 498 |
+
split: test
|
| 499 |
+
revision: None
|
| 500 |
+
metrics:
|
| 501 |
+
- type: map_at_1
|
| 502 |
+
value: 21.719
|
| 503 |
+
- type: map_at_10
|
| 504 |
+
value: 29.326999999999998
|
| 505 |
+
- type: map_at_100
|
| 506 |
+
value: 30.314000000000004
|
| 507 |
+
- type: map_at_1000
|
| 508 |
+
value: 30.397000000000002
|
| 509 |
+
- type: map_at_3
|
| 510 |
+
value: 27.101
|
| 511 |
+
- type: map_at_5
|
| 512 |
+
value: 28.141
|
| 513 |
+
- type: mrr_at_1
|
| 514 |
+
value: 23.503
|
| 515 |
+
- type: mrr_at_10
|
| 516 |
+
value: 31.225
|
| 517 |
+
- type: mrr_at_100
|
| 518 |
+
value: 32.096000000000004
|
| 519 |
+
- type: mrr_at_1000
|
| 520 |
+
value: 32.159
|
| 521 |
+
- type: mrr_at_3
|
| 522 |
+
value: 29.076999999999998
|
| 523 |
+
- type: mrr_at_5
|
| 524 |
+
value: 30.083
|
| 525 |
+
- type: ndcg_at_1
|
| 526 |
+
value: 23.503
|
| 527 |
+
- type: ndcg_at_10
|
| 528 |
+
value: 33.842
|
| 529 |
+
- type: ndcg_at_100
|
| 530 |
+
value: 39.038000000000004
|
| 531 |
+
- type: ndcg_at_1000
|
| 532 |
+
value: 41.214
|
| 533 |
+
- type: ndcg_at_3
|
| 534 |
+
value: 29.347
|
| 535 |
+
- type: ndcg_at_5
|
| 536 |
+
value: 31.121
|
| 537 |
+
- type: precision_at_1
|
| 538 |
+
value: 23.503
|
| 539 |
+
- type: precision_at_10
|
| 540 |
+
value: 5.266
|
| 541 |
+
- type: precision_at_100
|
| 542 |
+
value: 0.831
|
| 543 |
+
- type: precision_at_1000
|
| 544 |
+
value: 0.106
|
| 545 |
+
- type: precision_at_3
|
| 546 |
+
value: 12.504999999999999
|
| 547 |
+
- type: precision_at_5
|
| 548 |
+
value: 8.565000000000001
|
| 549 |
+
- type: recall_at_1
|
| 550 |
+
value: 21.719
|
| 551 |
+
- type: recall_at_10
|
| 552 |
+
value: 46.024
|
| 553 |
+
- type: recall_at_100
|
| 554 |
+
value: 70.78999999999999
|
| 555 |
+
- type: recall_at_1000
|
| 556 |
+
value: 87.022
|
| 557 |
+
- type: recall_at_3
|
| 558 |
+
value: 33.64
|
| 559 |
+
- type: recall_at_5
|
| 560 |
+
value: 37.992
|
| 561 |
+
- task:
|
| 562 |
+
type: Retrieval
|
| 563 |
+
dataset:
|
| 564 |
+
type: BeIR/cqadupstack
|
| 565 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
| 566 |
+
config: default
|
| 567 |
+
split: test
|
| 568 |
+
revision: None
|
| 569 |
+
metrics:
|
| 570 |
+
- type: map_at_1
|
| 571 |
+
value: 15.601
|
| 572 |
+
- type: map_at_10
|
| 573 |
+
value: 22.054000000000002
|
| 574 |
+
- type: map_at_100
|
| 575 |
+
value: 23.177
|
| 576 |
+
- type: map_at_1000
|
| 577 |
+
value: 23.308
|
| 578 |
+
- type: map_at_3
|
| 579 |
+
value: 19.772000000000002
|
| 580 |
+
- type: map_at_5
|
| 581 |
+
value: 21.055
|
| 582 |
+
- type: mrr_at_1
|
| 583 |
+
value: 19.403000000000002
|
| 584 |
+
- type: mrr_at_10
|
| 585 |
+
value: 26.409
|
| 586 |
+
- type: mrr_at_100
|
| 587 |
+
value: 27.356
|
| 588 |
+
- type: mrr_at_1000
|
| 589 |
+
value: 27.441
|
| 590 |
+
- type: mrr_at_3
|
| 591 |
+
value: 24.108999999999998
|
| 592 |
+
- type: mrr_at_5
|
| 593 |
+
value: 25.427
|
| 594 |
+
- type: ndcg_at_1
|
| 595 |
+
value: 19.403000000000002
|
| 596 |
+
- type: ndcg_at_10
|
| 597 |
+
value: 26.474999999999998
|
| 598 |
+
- type: ndcg_at_100
|
| 599 |
+
value: 32.086
|
| 600 |
+
- type: ndcg_at_1000
|
| 601 |
+
value: 35.231
|
| 602 |
+
- type: ndcg_at_3
|
| 603 |
+
value: 22.289
|
| 604 |
+
- type: ndcg_at_5
|
| 605 |
+
value: 24.271
|
| 606 |
+
- type: precision_at_1
|
| 607 |
+
value: 19.403000000000002
|
| 608 |
+
- type: precision_at_10
|
| 609 |
+
value: 4.813
|
| 610 |
+
- type: precision_at_100
|
| 611 |
+
value: 0.8869999999999999
|
| 612 |
+
- type: precision_at_1000
|
| 613 |
+
value: 0.13
|
| 614 |
+
- type: precision_at_3
|
| 615 |
+
value: 10.531
|
| 616 |
+
- type: precision_at_5
|
| 617 |
+
value: 7.710999999999999
|
| 618 |
+
- type: recall_at_1
|
| 619 |
+
value: 15.601
|
| 620 |
+
- type: recall_at_10
|
| 621 |
+
value: 35.916
|
| 622 |
+
- type: recall_at_100
|
| 623 |
+
value: 60.8
|
| 624 |
+
- type: recall_at_1000
|
| 625 |
+
value: 83.245
|
| 626 |
+
- type: recall_at_3
|
| 627 |
+
value: 24.321
|
| 628 |
+
- type: recall_at_5
|
| 629 |
+
value: 29.372999999999998
|
| 630 |
+
- task:
|
| 631 |
+
type: Retrieval
|
| 632 |
+
dataset:
|
| 633 |
+
type: BeIR/cqadupstack
|
| 634 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
| 635 |
+
config: default
|
| 636 |
+
split: test
|
| 637 |
+
revision: None
|
| 638 |
+
metrics:
|
| 639 |
+
- type: map_at_1
|
| 640 |
+
value: 25.522
|
| 641 |
+
- type: map_at_10
|
| 642 |
+
value: 34.854
|
| 643 |
+
- type: map_at_100
|
| 644 |
+
value: 36.269
|
| 645 |
+
- type: map_at_1000
|
| 646 |
+
value: 36.387
|
| 647 |
+
- type: map_at_3
|
| 648 |
+
value: 32.187
|
| 649 |
+
- type: map_at_5
|
| 650 |
+
value: 33.692
|
| 651 |
+
- type: mrr_at_1
|
| 652 |
+
value: 31.375999999999998
|
| 653 |
+
- type: mrr_at_10
|
| 654 |
+
value: 40.471000000000004
|
| 655 |
+
- type: mrr_at_100
|
| 656 |
+
value: 41.481
|
| 657 |
+
- type: mrr_at_1000
|
| 658 |
+
value: 41.533
|
| 659 |
+
- type: mrr_at_3
|
| 660 |
+
value: 38.274
|
| 661 |
+
- type: mrr_at_5
|
| 662 |
+
value: 39.612
|
| 663 |
+
- type: ndcg_at_1
|
| 664 |
+
value: 31.375999999999998
|
| 665 |
+
- type: ndcg_at_10
|
| 666 |
+
value: 40.298
|
| 667 |
+
- type: ndcg_at_100
|
| 668 |
+
value: 46.255
|
| 669 |
+
- type: ndcg_at_1000
|
| 670 |
+
value: 48.522
|
| 671 |
+
- type: ndcg_at_3
|
| 672 |
+
value: 36.049
|
| 673 |
+
- type: ndcg_at_5
|
| 674 |
+
value: 38.095
|
| 675 |
+
- type: precision_at_1
|
| 676 |
+
value: 31.375999999999998
|
| 677 |
+
- type: precision_at_10
|
| 678 |
+
value: 7.305000000000001
|
| 679 |
+
- type: precision_at_100
|
| 680 |
+
value: 1.201
|
| 681 |
+
- type: precision_at_1000
|
| 682 |
+
value: 0.157
|
| 683 |
+
- type: precision_at_3
|
| 684 |
+
value: 17.132
|
| 685 |
+
- type: precision_at_5
|
| 686 |
+
value: 12.107999999999999
|
| 687 |
+
- type: recall_at_1
|
| 688 |
+
value: 25.522
|
| 689 |
+
- type: recall_at_10
|
| 690 |
+
value: 50.988
|
| 691 |
+
- type: recall_at_100
|
| 692 |
+
value: 76.005
|
| 693 |
+
- type: recall_at_1000
|
| 694 |
+
value: 91.11200000000001
|
| 695 |
+
- type: recall_at_3
|
| 696 |
+
value: 38.808
|
| 697 |
+
- type: recall_at_5
|
| 698 |
+
value: 44.279
|
| 699 |
+
- task:
|
| 700 |
+
type: Retrieval
|
| 701 |
+
dataset:
|
| 702 |
+
type: BeIR/cqadupstack
|
| 703 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
| 704 |
+
config: default
|
| 705 |
+
split: test
|
| 706 |
+
revision: None
|
| 707 |
+
metrics:
|
| 708 |
+
- type: map_at_1
|
| 709 |
+
value: 24.615000000000002
|
| 710 |
+
- type: map_at_10
|
| 711 |
+
value: 32.843
|
| 712 |
+
- type: map_at_100
|
| 713 |
+
value: 34.172999999999995
|
| 714 |
+
- type: map_at_1000
|
| 715 |
+
value: 34.286
|
| 716 |
+
- type: map_at_3
|
| 717 |
+
value: 30.125
|
| 718 |
+
- type: map_at_5
|
| 719 |
+
value: 31.495
|
| 720 |
+
- type: mrr_at_1
|
| 721 |
+
value: 30.023
|
| 722 |
+
- type: mrr_at_10
|
| 723 |
+
value: 38.106
|
| 724 |
+
- type: mrr_at_100
|
| 725 |
+
value: 39.01
|
| 726 |
+
- type: mrr_at_1000
|
| 727 |
+
value: 39.071
|
| 728 |
+
- type: mrr_at_3
|
| 729 |
+
value: 35.674
|
| 730 |
+
- type: mrr_at_5
|
| 731 |
+
value: 36.924
|
| 732 |
+
- type: ndcg_at_1
|
| 733 |
+
value: 30.023
|
| 734 |
+
- type: ndcg_at_10
|
| 735 |
+
value: 38.091
|
| 736 |
+
- type: ndcg_at_100
|
| 737 |
+
value: 43.771
|
| 738 |
+
- type: ndcg_at_1000
|
| 739 |
+
value: 46.315
|
| 740 |
+
- type: ndcg_at_3
|
| 741 |
+
value: 33.507
|
| 742 |
+
- type: ndcg_at_5
|
| 743 |
+
value: 35.304
|
| 744 |
+
- type: precision_at_1
|
| 745 |
+
value: 30.023
|
| 746 |
+
- type: precision_at_10
|
| 747 |
+
value: 6.837999999999999
|
| 748 |
+
- type: precision_at_100
|
| 749 |
+
value: 1.124
|
| 750 |
+
- type: precision_at_1000
|
| 751 |
+
value: 0.152
|
| 752 |
+
- type: precision_at_3
|
| 753 |
+
value: 15.562999999999999
|
| 754 |
+
- type: precision_at_5
|
| 755 |
+
value: 10.936
|
| 756 |
+
- type: recall_at_1
|
| 757 |
+
value: 24.615000000000002
|
| 758 |
+
- type: recall_at_10
|
| 759 |
+
value: 48.691
|
| 760 |
+
- type: recall_at_100
|
| 761 |
+
value: 72.884
|
| 762 |
+
- type: recall_at_1000
|
| 763 |
+
value: 90.387
|
| 764 |
+
- type: recall_at_3
|
| 765 |
+
value: 35.659
|
| 766 |
+
- type: recall_at_5
|
| 767 |
+
value: 40.602
|
| 768 |
+
- task:
|
| 769 |
+
type: Retrieval
|
| 770 |
+
dataset:
|
| 771 |
+
type: BeIR/cqadupstack
|
| 772 |
+
name: MTEB CQADupstackRetrieval
|
| 773 |
+
config: default
|
| 774 |
+
split: test
|
| 775 |
+
revision: None
|
| 776 |
+
metrics:
|
| 777 |
+
- type: map_at_1
|
| 778 |
+
value: 23.223666666666666
|
| 779 |
+
- type: map_at_10
|
| 780 |
+
value: 31.338166666666673
|
| 781 |
+
- type: map_at_100
|
| 782 |
+
value: 32.47358333333333
|
| 783 |
+
- type: map_at_1000
|
| 784 |
+
value: 32.5955
|
| 785 |
+
- type: map_at_3
|
| 786 |
+
value: 28.84133333333333
|
| 787 |
+
- type: map_at_5
|
| 788 |
+
value: 30.20808333333333
|
| 789 |
+
- type: mrr_at_1
|
| 790 |
+
value: 27.62483333333333
|
| 791 |
+
- type: mrr_at_10
|
| 792 |
+
value: 35.385916666666674
|
| 793 |
+
- type: mrr_at_100
|
| 794 |
+
value: 36.23325
|
| 795 |
+
- type: mrr_at_1000
|
| 796 |
+
value: 36.29966666666667
|
| 797 |
+
- type: mrr_at_3
|
| 798 |
+
value: 33.16583333333333
|
| 799 |
+
- type: mrr_at_5
|
| 800 |
+
value: 34.41983333333334
|
| 801 |
+
- type: ndcg_at_1
|
| 802 |
+
value: 27.62483333333333
|
| 803 |
+
- type: ndcg_at_10
|
| 804 |
+
value: 36.222
|
| 805 |
+
- type: ndcg_at_100
|
| 806 |
+
value: 41.29491666666666
|
| 807 |
+
- type: ndcg_at_1000
|
| 808 |
+
value: 43.85508333333333
|
| 809 |
+
- type: ndcg_at_3
|
| 810 |
+
value: 31.95116666666667
|
| 811 |
+
- type: ndcg_at_5
|
| 812 |
+
value: 33.88541666666667
|
| 813 |
+
- type: precision_at_1
|
| 814 |
+
value: 27.62483333333333
|
| 815 |
+
- type: precision_at_10
|
| 816 |
+
value: 6.339916666666667
|
| 817 |
+
- type: precision_at_100
|
| 818 |
+
value: 1.0483333333333333
|
| 819 |
+
- type: precision_at_1000
|
| 820 |
+
value: 0.14608333333333334
|
| 821 |
+
- type: precision_at_3
|
| 822 |
+
value: 14.726500000000003
|
| 823 |
+
- type: precision_at_5
|
| 824 |
+
value: 10.395
|
| 825 |
+
- type: recall_at_1
|
| 826 |
+
value: 23.223666666666666
|
| 827 |
+
- type: recall_at_10
|
| 828 |
+
value: 46.778999999999996
|
| 829 |
+
- type: recall_at_100
|
| 830 |
+
value: 69.27141666666667
|
| 831 |
+
- type: recall_at_1000
|
| 832 |
+
value: 87.27383333333334
|
| 833 |
+
- type: recall_at_3
|
| 834 |
+
value: 34.678749999999994
|
| 835 |
+
- type: recall_at_5
|
| 836 |
+
value: 39.79900000000001
|
| 837 |
+
- task:
|
| 838 |
+
type: Retrieval
|
| 839 |
+
dataset:
|
| 840 |
+
type: BeIR/cqadupstack
|
| 841 |
+
name: MTEB CQADupstackStatsRetrieval
|
| 842 |
+
config: default
|
| 843 |
+
split: test
|
| 844 |
+
revision: None
|
| 845 |
+
metrics:
|
| 846 |
+
- type: map_at_1
|
| 847 |
+
value: 21.677
|
| 848 |
+
- type: map_at_10
|
| 849 |
+
value: 27.828000000000003
|
| 850 |
+
- type: map_at_100
|
| 851 |
+
value: 28.538999999999998
|
| 852 |
+
- type: map_at_1000
|
| 853 |
+
value: 28.64
|
| 854 |
+
- type: map_at_3
|
| 855 |
+
value: 26.105
|
| 856 |
+
- type: map_at_5
|
| 857 |
+
value: 27.009
|
| 858 |
+
- type: mrr_at_1
|
| 859 |
+
value: 24.387
|
| 860 |
+
- type: mrr_at_10
|
| 861 |
+
value: 30.209999999999997
|
| 862 |
+
- type: mrr_at_100
|
| 863 |
+
value: 30.953000000000003
|
| 864 |
+
- type: mrr_at_1000
|
| 865 |
+
value: 31.029
|
| 866 |
+
- type: mrr_at_3
|
| 867 |
+
value: 28.707
|
| 868 |
+
- type: mrr_at_5
|
| 869 |
+
value: 29.610999999999997
|
| 870 |
+
- type: ndcg_at_1
|
| 871 |
+
value: 24.387
|
| 872 |
+
- type: ndcg_at_10
|
| 873 |
+
value: 31.378
|
| 874 |
+
- type: ndcg_at_100
|
| 875 |
+
value: 35.249
|
| 876 |
+
- type: ndcg_at_1000
|
| 877 |
+
value: 37.923
|
| 878 |
+
- type: ndcg_at_3
|
| 879 |
+
value: 28.213
|
| 880 |
+
- type: ndcg_at_5
|
| 881 |
+
value: 29.658
|
| 882 |
+
- type: precision_at_1
|
| 883 |
+
value: 24.387
|
| 884 |
+
- type: precision_at_10
|
| 885 |
+
value: 4.8309999999999995
|
| 886 |
+
- type: precision_at_100
|
| 887 |
+
value: 0.73
|
| 888 |
+
- type: precision_at_1000
|
| 889 |
+
value: 0.104
|
| 890 |
+
- type: precision_at_3
|
| 891 |
+
value: 12.168
|
| 892 |
+
- type: precision_at_5
|
| 893 |
+
value: 8.251999999999999
|
| 894 |
+
- type: recall_at_1
|
| 895 |
+
value: 21.677
|
| 896 |
+
- type: recall_at_10
|
| 897 |
+
value: 40.069
|
| 898 |
+
- type: recall_at_100
|
| 899 |
+
value: 58.077
|
| 900 |
+
- type: recall_at_1000
|
| 901 |
+
value: 77.97
|
| 902 |
+
- type: recall_at_3
|
| 903 |
+
value: 31.03
|
| 904 |
+
- type: recall_at_5
|
| 905 |
+
value: 34.838
|
| 906 |
+
- task:
|
| 907 |
+
type: Retrieval
|
| 908 |
+
dataset:
|
| 909 |
+
type: BeIR/cqadupstack
|
| 910 |
+
name: MTEB CQADupstackTexRetrieval
|
| 911 |
+
config: default
|
| 912 |
+
split: test
|
| 913 |
+
revision: None
|
| 914 |
+
metrics:
|
| 915 |
+
- type: map_at_1
|
| 916 |
+
value: 14.484
|
| 917 |
+
- type: map_at_10
|
| 918 |
+
value: 20.355
|
| 919 |
+
- type: map_at_100
|
| 920 |
+
value: 21.382
|
| 921 |
+
- type: map_at_1000
|
| 922 |
+
value: 21.511
|
| 923 |
+
- type: map_at_3
|
| 924 |
+
value: 18.448
|
| 925 |
+
- type: map_at_5
|
| 926 |
+
value: 19.451999999999998
|
| 927 |
+
- type: mrr_at_1
|
| 928 |
+
value: 17.584
|
| 929 |
+
- type: mrr_at_10
|
| 930 |
+
value: 23.825
|
| 931 |
+
- type: mrr_at_100
|
| 932 |
+
value: 24.704
|
| 933 |
+
- type: mrr_at_1000
|
| 934 |
+
value: 24.793000000000003
|
| 935 |
+
- type: mrr_at_3
|
| 936 |
+
value: 21.92
|
| 937 |
+
- type: mrr_at_5
|
| 938 |
+
value: 22.97
|
| 939 |
+
- type: ndcg_at_1
|
| 940 |
+
value: 17.584
|
| 941 |
+
- type: ndcg_at_10
|
| 942 |
+
value: 24.315
|
| 943 |
+
- type: ndcg_at_100
|
| 944 |
+
value: 29.354999999999997
|
| 945 |
+
- type: ndcg_at_1000
|
| 946 |
+
value: 32.641999999999996
|
| 947 |
+
- type: ndcg_at_3
|
| 948 |
+
value: 20.802
|
| 949 |
+
- type: ndcg_at_5
|
| 950 |
+
value: 22.335
|
| 951 |
+
- type: precision_at_1
|
| 952 |
+
value: 17.584
|
| 953 |
+
- type: precision_at_10
|
| 954 |
+
value: 4.443
|
| 955 |
+
- type: precision_at_100
|
| 956 |
+
value: 0.8160000000000001
|
| 957 |
+
- type: precision_at_1000
|
| 958 |
+
value: 0.128
|
| 959 |
+
- type: precision_at_3
|
| 960 |
+
value: 9.807
|
| 961 |
+
- type: precision_at_5
|
| 962 |
+
value: 7.0889999999999995
|
| 963 |
+
- type: recall_at_1
|
| 964 |
+
value: 14.484
|
| 965 |
+
- type: recall_at_10
|
| 966 |
+
value: 32.804
|
| 967 |
+
- type: recall_at_100
|
| 968 |
+
value: 55.679
|
| 969 |
+
- type: recall_at_1000
|
| 970 |
+
value: 79.63
|
| 971 |
+
- type: recall_at_3
|
| 972 |
+
value: 22.976
|
| 973 |
+
- type: recall_at_5
|
| 974 |
+
value: 26.939
|
| 975 |
+
- task:
|
| 976 |
+
type: Retrieval
|
| 977 |
+
dataset:
|
| 978 |
+
type: BeIR/cqadupstack
|
| 979 |
+
name: MTEB CQADupstackUnixRetrieval
|
| 980 |
+
config: default
|
| 981 |
+
split: test
|
| 982 |
+
revision: None
|
| 983 |
+
metrics:
|
| 984 |
+
- type: map_at_1
|
| 985 |
+
value: 22.983999999999998
|
| 986 |
+
- type: map_at_10
|
| 987 |
+
value: 30.812
|
| 988 |
+
- type: map_at_100
|
| 989 |
+
value: 31.938
|
| 990 |
+
- type: map_at_1000
|
| 991 |
+
value: 32.056000000000004
|
| 992 |
+
- type: map_at_3
|
| 993 |
+
value: 28.449999999999996
|
| 994 |
+
- type: map_at_5
|
| 995 |
+
value: 29.542
|
| 996 |
+
- type: mrr_at_1
|
| 997 |
+
value: 27.145999999999997
|
| 998 |
+
- type: mrr_at_10
|
| 999 |
+
value: 34.782999999999994
|
| 1000 |
+
- type: mrr_at_100
|
| 1001 |
+
value: 35.699
|
| 1002 |
+
- type: mrr_at_1000
|
| 1003 |
+
value: 35.768
|
| 1004 |
+
- type: mrr_at_3
|
| 1005 |
+
value: 32.572
|
| 1006 |
+
- type: mrr_at_5
|
| 1007 |
+
value: 33.607
|
| 1008 |
+
- type: ndcg_at_1
|
| 1009 |
+
value: 27.145999999999997
|
| 1010 |
+
- type: ndcg_at_10
|
| 1011 |
+
value: 35.722
|
| 1012 |
+
- type: ndcg_at_100
|
| 1013 |
+
value: 40.964
|
| 1014 |
+
- type: ndcg_at_1000
|
| 1015 |
+
value: 43.598
|
| 1016 |
+
- type: ndcg_at_3
|
| 1017 |
+
value: 31.379
|
| 1018 |
+
- type: ndcg_at_5
|
| 1019 |
+
value: 32.924
|
| 1020 |
+
- type: precision_at_1
|
| 1021 |
+
value: 27.145999999999997
|
| 1022 |
+
- type: precision_at_10
|
| 1023 |
+
value: 6.063000000000001
|
| 1024 |
+
- type: precision_at_100
|
| 1025 |
+
value: 0.9730000000000001
|
| 1026 |
+
- type: precision_at_1000
|
| 1027 |
+
value: 0.13
|
| 1028 |
+
- type: precision_at_3
|
| 1029 |
+
value: 14.366000000000001
|
| 1030 |
+
- type: precision_at_5
|
| 1031 |
+
value: 9.776
|
| 1032 |
+
- type: recall_at_1
|
| 1033 |
+
value: 22.983999999999998
|
| 1034 |
+
- type: recall_at_10
|
| 1035 |
+
value: 46.876
|
| 1036 |
+
- type: recall_at_100
|
| 1037 |
+
value: 69.646
|
| 1038 |
+
- type: recall_at_1000
|
| 1039 |
+
value: 88.305
|
| 1040 |
+
- type: recall_at_3
|
| 1041 |
+
value: 34.471000000000004
|
| 1042 |
+
- type: recall_at_5
|
| 1043 |
+
value: 38.76
|
| 1044 |
+
- task:
|
| 1045 |
+
type: Retrieval
|
| 1046 |
+
dataset:
|
| 1047 |
+
type: BeIR/cqadupstack
|
| 1048 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
| 1049 |
+
config: default
|
| 1050 |
+
split: test
|
| 1051 |
+
revision: None
|
| 1052 |
+
metrics:
|
| 1053 |
+
- type: map_at_1
|
| 1054 |
+
value: 23.017000000000003
|
| 1055 |
+
- type: map_at_10
|
| 1056 |
+
value: 31.049
|
| 1057 |
+
- type: map_at_100
|
| 1058 |
+
value: 32.582
|
| 1059 |
+
- type: map_at_1000
|
| 1060 |
+
value: 32.817
|
| 1061 |
+
- type: map_at_3
|
| 1062 |
+
value: 28.303
|
| 1063 |
+
- type: map_at_5
|
| 1064 |
+
value: 29.854000000000003
|
| 1065 |
+
- type: mrr_at_1
|
| 1066 |
+
value: 27.866000000000003
|
| 1067 |
+
- type: mrr_at_10
|
| 1068 |
+
value: 35.56
|
| 1069 |
+
- type: mrr_at_100
|
| 1070 |
+
value: 36.453
|
| 1071 |
+
- type: mrr_at_1000
|
| 1072 |
+
value: 36.519
|
| 1073 |
+
- type: mrr_at_3
|
| 1074 |
+
value: 32.938
|
| 1075 |
+
- type: mrr_at_5
|
| 1076 |
+
value: 34.391
|
| 1077 |
+
- type: ndcg_at_1
|
| 1078 |
+
value: 27.866000000000003
|
| 1079 |
+
- type: ndcg_at_10
|
| 1080 |
+
value: 36.506
|
| 1081 |
+
- type: ndcg_at_100
|
| 1082 |
+
value: 42.344
|
| 1083 |
+
- type: ndcg_at_1000
|
| 1084 |
+
value: 45.213
|
| 1085 |
+
- type: ndcg_at_3
|
| 1086 |
+
value: 31.805
|
| 1087 |
+
- type: ndcg_at_5
|
| 1088 |
+
value: 33.933
|
| 1089 |
+
- type: precision_at_1
|
| 1090 |
+
value: 27.866000000000003
|
| 1091 |
+
- type: precision_at_10
|
| 1092 |
+
value: 7.016
|
| 1093 |
+
- type: precision_at_100
|
| 1094 |
+
value: 1.468
|
| 1095 |
+
- type: precision_at_1000
|
| 1096 |
+
value: 0.23900000000000002
|
| 1097 |
+
- type: precision_at_3
|
| 1098 |
+
value: 14.822
|
| 1099 |
+
- type: precision_at_5
|
| 1100 |
+
value: 10.791
|
| 1101 |
+
- type: recall_at_1
|
| 1102 |
+
value: 23.017000000000003
|
| 1103 |
+
- type: recall_at_10
|
| 1104 |
+
value: 47.053
|
| 1105 |
+
- type: recall_at_100
|
| 1106 |
+
value: 73.177
|
| 1107 |
+
- type: recall_at_1000
|
| 1108 |
+
value: 91.47800000000001
|
| 1109 |
+
- type: recall_at_3
|
| 1110 |
+
value: 33.675
|
| 1111 |
+
- type: recall_at_5
|
| 1112 |
+
value: 39.36
|
| 1113 |
+
- task:
|
| 1114 |
+
type: Retrieval
|
| 1115 |
+
dataset:
|
| 1116 |
+
type: BeIR/cqadupstack
|
| 1117 |
+
name: MTEB CQADupstackWordpressRetrieval
|
| 1118 |
+
config: default
|
| 1119 |
+
split: test
|
| 1120 |
+
revision: None
|
| 1121 |
+
metrics:
|
| 1122 |
+
- type: map_at_1
|
| 1123 |
+
value: 16.673
|
| 1124 |
+
- type: map_at_10
|
| 1125 |
+
value: 24.051000000000002
|
| 1126 |
+
- type: map_at_100
|
| 1127 |
+
value: 24.933
|
| 1128 |
+
- type: map_at_1000
|
| 1129 |
+
value: 25.06
|
| 1130 |
+
- type: map_at_3
|
| 1131 |
+
value: 21.446
|
| 1132 |
+
- type: map_at_5
|
| 1133 |
+
value: 23.064
|
| 1134 |
+
- type: mrr_at_1
|
| 1135 |
+
value: 18.115000000000002
|
| 1136 |
+
- type: mrr_at_10
|
| 1137 |
+
value: 25.927
|
| 1138 |
+
- type: mrr_at_100
|
| 1139 |
+
value: 26.718999999999998
|
| 1140 |
+
- type: mrr_at_1000
|
| 1141 |
+
value: 26.817999999999998
|
| 1142 |
+
- type: mrr_at_3
|
| 1143 |
+
value: 23.383000000000003
|
| 1144 |
+
- type: mrr_at_5
|
| 1145 |
+
value: 25.008999999999997
|
| 1146 |
+
- type: ndcg_at_1
|
| 1147 |
+
value: 18.115000000000002
|
| 1148 |
+
- type: ndcg_at_10
|
| 1149 |
+
value: 28.669
|
| 1150 |
+
- type: ndcg_at_100
|
| 1151 |
+
value: 33.282000000000004
|
| 1152 |
+
- type: ndcg_at_1000
|
| 1153 |
+
value: 36.481
|
| 1154 |
+
- type: ndcg_at_3
|
| 1155 |
+
value: 23.574
|
| 1156 |
+
- type: ndcg_at_5
|
| 1157 |
+
value: 26.340000000000003
|
| 1158 |
+
- type: precision_at_1
|
| 1159 |
+
value: 18.115000000000002
|
| 1160 |
+
- type: precision_at_10
|
| 1161 |
+
value: 4.769
|
| 1162 |
+
- type: precision_at_100
|
| 1163 |
+
value: 0.767
|
| 1164 |
+
- type: precision_at_1000
|
| 1165 |
+
value: 0.116
|
| 1166 |
+
- type: precision_at_3
|
| 1167 |
+
value: 10.351
|
| 1168 |
+
- type: precision_at_5
|
| 1169 |
+
value: 7.8
|
| 1170 |
+
- type: recall_at_1
|
| 1171 |
+
value: 16.673
|
| 1172 |
+
- type: recall_at_10
|
| 1173 |
+
value: 41.063
|
| 1174 |
+
- type: recall_at_100
|
| 1175 |
+
value: 62.851
|
| 1176 |
+
- type: recall_at_1000
|
| 1177 |
+
value: 86.701
|
| 1178 |
+
- type: recall_at_3
|
| 1179 |
+
value: 27.532
|
| 1180 |
+
- type: recall_at_5
|
| 1181 |
+
value: 34.076
|
| 1182 |
+
- task:
|
| 1183 |
+
type: Retrieval
|
| 1184 |
+
dataset:
|
| 1185 |
+
type: climate-fever
|
| 1186 |
+
name: MTEB ClimateFEVER
|
| 1187 |
+
config: default
|
| 1188 |
+
split: test
|
| 1189 |
+
revision: None
|
| 1190 |
+
metrics:
|
| 1191 |
+
- type: map_at_1
|
| 1192 |
+
value: 8.752
|
| 1193 |
+
- type: map_at_10
|
| 1194 |
+
value: 15.120000000000001
|
| 1195 |
+
- type: map_at_100
|
| 1196 |
+
value: 16.678
|
| 1197 |
+
- type: map_at_1000
|
| 1198 |
+
value: 16.854
|
| 1199 |
+
- type: map_at_3
|
| 1200 |
+
value: 12.603
|
| 1201 |
+
- type: map_at_5
|
| 1202 |
+
value: 13.918
|
| 1203 |
+
- type: mrr_at_1
|
| 1204 |
+
value: 19.283
|
| 1205 |
+
- type: mrr_at_10
|
| 1206 |
+
value: 29.145
|
| 1207 |
+
- type: mrr_at_100
|
| 1208 |
+
value: 30.281000000000002
|
| 1209 |
+
- type: mrr_at_1000
|
| 1210 |
+
value: 30.339
|
| 1211 |
+
- type: mrr_at_3
|
| 1212 |
+
value: 26.069
|
| 1213 |
+
- type: mrr_at_5
|
| 1214 |
+
value: 27.864
|
| 1215 |
+
- type: ndcg_at_1
|
| 1216 |
+
value: 19.283
|
| 1217 |
+
- type: ndcg_at_10
|
| 1218 |
+
value: 21.804000000000002
|
| 1219 |
+
- type: ndcg_at_100
|
| 1220 |
+
value: 28.576
|
| 1221 |
+
- type: ndcg_at_1000
|
| 1222 |
+
value: 32.063
|
| 1223 |
+
- type: ndcg_at_3
|
| 1224 |
+
value: 17.511
|
| 1225 |
+
- type: ndcg_at_5
|
| 1226 |
+
value: 19.112000000000002
|
| 1227 |
+
- type: precision_at_1
|
| 1228 |
+
value: 19.283
|
| 1229 |
+
- type: precision_at_10
|
| 1230 |
+
value: 6.873
|
| 1231 |
+
- type: precision_at_100
|
| 1232 |
+
value: 1.405
|
| 1233 |
+
- type: precision_at_1000
|
| 1234 |
+
value: 0.20500000000000002
|
| 1235 |
+
- type: precision_at_3
|
| 1236 |
+
value: 13.16
|
| 1237 |
+
- type: precision_at_5
|
| 1238 |
+
value: 10.189
|
| 1239 |
+
- type: recall_at_1
|
| 1240 |
+
value: 8.752
|
| 1241 |
+
- type: recall_at_10
|
| 1242 |
+
value: 27.004
|
| 1243 |
+
- type: recall_at_100
|
| 1244 |
+
value: 50.648
|
| 1245 |
+
- type: recall_at_1000
|
| 1246 |
+
value: 70.458
|
| 1247 |
+
- type: recall_at_3
|
| 1248 |
+
value: 16.461000000000002
|
| 1249 |
+
- type: recall_at_5
|
| 1250 |
+
value: 20.973
|
| 1251 |
+
- task:
|
| 1252 |
+
type: Retrieval
|
| 1253 |
+
dataset:
|
| 1254 |
+
type: dbpedia-entity
|
| 1255 |
+
name: MTEB DBPedia
|
| 1256 |
+
config: default
|
| 1257 |
+
split: test
|
| 1258 |
+
revision: None
|
| 1259 |
+
metrics:
|
| 1260 |
+
- type: map_at_1
|
| 1261 |
+
value: 6.81
|
| 1262 |
+
- type: map_at_10
|
| 1263 |
+
value: 14.056
|
| 1264 |
+
- type: map_at_100
|
| 1265 |
+
value: 18.961
|
| 1266 |
+
- type: map_at_1000
|
| 1267 |
+
value: 20.169
|
| 1268 |
+
- type: map_at_3
|
| 1269 |
+
value: 10.496
|
| 1270 |
+
- type: map_at_5
|
| 1271 |
+
value: 11.952
|
| 1272 |
+
- type: mrr_at_1
|
| 1273 |
+
value: 53.5
|
| 1274 |
+
- type: mrr_at_10
|
| 1275 |
+
value: 63.479
|
| 1276 |
+
- type: mrr_at_100
|
| 1277 |
+
value: 63.971999999999994
|
| 1278 |
+
- type: mrr_at_1000
|
| 1279 |
+
value: 63.993
|
| 1280 |
+
- type: mrr_at_3
|
| 1281 |
+
value: 61.541999999999994
|
| 1282 |
+
- type: mrr_at_5
|
| 1283 |
+
value: 62.778999999999996
|
| 1284 |
+
- type: ndcg_at_1
|
| 1285 |
+
value: 42.25
|
| 1286 |
+
- type: ndcg_at_10
|
| 1287 |
+
value: 31.471
|
| 1288 |
+
- type: ndcg_at_100
|
| 1289 |
+
value: 35.115
|
| 1290 |
+
- type: ndcg_at_1000
|
| 1291 |
+
value: 42.408
|
| 1292 |
+
- type: ndcg_at_3
|
| 1293 |
+
value: 35.458
|
| 1294 |
+
- type: ndcg_at_5
|
| 1295 |
+
value: 32.973
|
| 1296 |
+
- type: precision_at_1
|
| 1297 |
+
value: 53.5
|
| 1298 |
+
- type: precision_at_10
|
| 1299 |
+
value: 24.85
|
| 1300 |
+
- type: precision_at_100
|
| 1301 |
+
value: 7.79
|
| 1302 |
+
- type: precision_at_1000
|
| 1303 |
+
value: 1.599
|
| 1304 |
+
- type: precision_at_3
|
| 1305 |
+
value: 38.667
|
| 1306 |
+
- type: precision_at_5
|
| 1307 |
+
value: 31.55
|
| 1308 |
+
- type: recall_at_1
|
| 1309 |
+
value: 6.81
|
| 1310 |
+
- type: recall_at_10
|
| 1311 |
+
value: 19.344
|
| 1312 |
+
- type: recall_at_100
|
| 1313 |
+
value: 40.837
|
| 1314 |
+
- type: recall_at_1000
|
| 1315 |
+
value: 64.661
|
| 1316 |
+
- type: recall_at_3
|
| 1317 |
+
value: 11.942
|
| 1318 |
+
- type: recall_at_5
|
| 1319 |
+
value: 14.646
|
| 1320 |
+
- task:
|
| 1321 |
+
type: Classification
|
| 1322 |
+
dataset:
|
| 1323 |
+
type: mteb/emotion
|
| 1324 |
+
name: MTEB EmotionClassification
|
| 1325 |
+
config: default
|
| 1326 |
+
split: test
|
| 1327 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
| 1328 |
+
metrics:
|
| 1329 |
+
- type: accuracy
|
| 1330 |
+
value: 44.64499999999999
|
| 1331 |
+
- type: f1
|
| 1332 |
+
value: 39.39106911352714
|
| 1333 |
+
- task:
|
| 1334 |
+
type: Retrieval
|
| 1335 |
+
dataset:
|
| 1336 |
+
type: fever
|
| 1337 |
+
name: MTEB FEVER
|
| 1338 |
+
config: default
|
| 1339 |
+
split: test
|
| 1340 |
+
revision: None
|
| 1341 |
+
metrics:
|
| 1342 |
+
- type: map_at_1
|
| 1343 |
+
value: 48.196
|
| 1344 |
+
- type: map_at_10
|
| 1345 |
+
value: 61.404
|
| 1346 |
+
- type: map_at_100
|
| 1347 |
+
value: 61.846000000000004
|
| 1348 |
+
- type: map_at_1000
|
| 1349 |
+
value: 61.866
|
| 1350 |
+
- type: map_at_3
|
| 1351 |
+
value: 58.975
|
| 1352 |
+
- type: map_at_5
|
| 1353 |
+
value: 60.525
|
| 1354 |
+
- type: mrr_at_1
|
| 1355 |
+
value: 52.025
|
| 1356 |
+
- type: mrr_at_10
|
| 1357 |
+
value: 65.43299999999999
|
| 1358 |
+
- type: mrr_at_100
|
| 1359 |
+
value: 65.80799999999999
|
| 1360 |
+
- type: mrr_at_1000
|
| 1361 |
+
value: 65.818
|
| 1362 |
+
- type: mrr_at_3
|
| 1363 |
+
value: 63.146
|
| 1364 |
+
- type: mrr_at_5
|
| 1365 |
+
value: 64.64
|
| 1366 |
+
- type: ndcg_at_1
|
| 1367 |
+
value: 52.025
|
| 1368 |
+
- type: ndcg_at_10
|
| 1369 |
+
value: 67.889
|
| 1370 |
+
- type: ndcg_at_100
|
| 1371 |
+
value: 69.864
|
| 1372 |
+
- type: ndcg_at_1000
|
| 1373 |
+
value: 70.337
|
| 1374 |
+
- type: ndcg_at_3
|
| 1375 |
+
value: 63.315
|
| 1376 |
+
- type: ndcg_at_5
|
| 1377 |
+
value: 65.91799999999999
|
| 1378 |
+
- type: precision_at_1
|
| 1379 |
+
value: 52.025
|
| 1380 |
+
- type: precision_at_10
|
| 1381 |
+
value: 9.182
|
| 1382 |
+
- type: precision_at_100
|
| 1383 |
+
value: 1.027
|
| 1384 |
+
- type: precision_at_1000
|
| 1385 |
+
value: 0.108
|
| 1386 |
+
- type: precision_at_3
|
| 1387 |
+
value: 25.968000000000004
|
| 1388 |
+
- type: precision_at_5
|
| 1389 |
+
value: 17.006
|
| 1390 |
+
- type: recall_at_1
|
| 1391 |
+
value: 48.196
|
| 1392 |
+
- type: recall_at_10
|
| 1393 |
+
value: 83.885
|
| 1394 |
+
- type: recall_at_100
|
| 1395 |
+
value: 92.671
|
| 1396 |
+
- type: recall_at_1000
|
| 1397 |
+
value: 96.018
|
| 1398 |
+
- type: recall_at_3
|
| 1399 |
+
value: 71.59
|
| 1400 |
+
- type: recall_at_5
|
| 1401 |
+
value: 77.946
|
| 1402 |
+
- task:
|
| 1403 |
+
type: Retrieval
|
| 1404 |
+
dataset:
|
| 1405 |
+
type: fiqa
|
| 1406 |
+
name: MTEB FiQA2018
|
| 1407 |
+
config: default
|
| 1408 |
+
split: test
|
| 1409 |
+
revision: None
|
| 1410 |
+
metrics:
|
| 1411 |
+
- type: map_at_1
|
| 1412 |
+
value: 15.193000000000001
|
| 1413 |
+
- type: map_at_10
|
| 1414 |
+
value: 25.168000000000003
|
| 1415 |
+
- type: map_at_100
|
| 1416 |
+
value: 27.017000000000003
|
| 1417 |
+
- type: map_at_1000
|
| 1418 |
+
value: 27.205000000000002
|
| 1419 |
+
- type: map_at_3
|
| 1420 |
+
value: 21.746
|
| 1421 |
+
- type: map_at_5
|
| 1422 |
+
value: 23.579
|
| 1423 |
+
- type: mrr_at_1
|
| 1424 |
+
value: 31.635999999999996
|
| 1425 |
+
- type: mrr_at_10
|
| 1426 |
+
value: 40.077
|
| 1427 |
+
- type: mrr_at_100
|
| 1428 |
+
value: 41.112
|
| 1429 |
+
- type: mrr_at_1000
|
| 1430 |
+
value: 41.160999999999994
|
| 1431 |
+
- type: mrr_at_3
|
| 1432 |
+
value: 37.937
|
| 1433 |
+
- type: mrr_at_5
|
| 1434 |
+
value: 39.18
|
| 1435 |
+
- type: ndcg_at_1
|
| 1436 |
+
value: 31.635999999999996
|
| 1437 |
+
- type: ndcg_at_10
|
| 1438 |
+
value: 32.298
|
| 1439 |
+
- type: ndcg_at_100
|
| 1440 |
+
value: 39.546
|
| 1441 |
+
- type: ndcg_at_1000
|
| 1442 |
+
value: 42.88
|
| 1443 |
+
- type: ndcg_at_3
|
| 1444 |
+
value: 29.221999999999998
|
| 1445 |
+
- type: ndcg_at_5
|
| 1446 |
+
value: 30.069000000000003
|
| 1447 |
+
- type: precision_at_1
|
| 1448 |
+
value: 31.635999999999996
|
| 1449 |
+
- type: precision_at_10
|
| 1450 |
+
value: 9.367
|
| 1451 |
+
- type: precision_at_100
|
| 1452 |
+
value: 1.645
|
| 1453 |
+
- type: precision_at_1000
|
| 1454 |
+
value: 0.22399999999999998
|
| 1455 |
+
- type: precision_at_3
|
| 1456 |
+
value: 20.01
|
| 1457 |
+
- type: precision_at_5
|
| 1458 |
+
value: 14.753
|
| 1459 |
+
- type: recall_at_1
|
| 1460 |
+
value: 15.193000000000001
|
| 1461 |
+
- type: recall_at_10
|
| 1462 |
+
value: 38.214999999999996
|
| 1463 |
+
- type: recall_at_100
|
| 1464 |
+
value: 65.95
|
| 1465 |
+
- type: recall_at_1000
|
| 1466 |
+
value: 85.85300000000001
|
| 1467 |
+
- type: recall_at_3
|
| 1468 |
+
value: 26.357000000000003
|
| 1469 |
+
- type: recall_at_5
|
| 1470 |
+
value: 31.319999999999997
|
| 1471 |
+
- task:
|
| 1472 |
+
type: Retrieval
|
| 1473 |
+
dataset:
|
| 1474 |
+
type: jinaai/ger_da_lir
|
| 1475 |
+
name: MTEB GerDaLIR
|
| 1476 |
+
config: default
|
| 1477 |
+
split: test
|
| 1478 |
+
revision: None
|
| 1479 |
+
metrics:
|
| 1480 |
+
- type: map_at_1
|
| 1481 |
+
value: 10.363
|
| 1482 |
+
- type: map_at_10
|
| 1483 |
+
value: 16.222
|
| 1484 |
+
- type: map_at_100
|
| 1485 |
+
value: 17.28
|
| 1486 |
+
- type: map_at_1000
|
| 1487 |
+
value: 17.380000000000003
|
| 1488 |
+
- type: map_at_3
|
| 1489 |
+
value: 14.054
|
| 1490 |
+
- type: map_at_5
|
| 1491 |
+
value: 15.203
|
| 1492 |
+
- type: mrr_at_1
|
| 1493 |
+
value: 11.644
|
| 1494 |
+
- type: mrr_at_10
|
| 1495 |
+
value: 17.625
|
| 1496 |
+
- type: mrr_at_100
|
| 1497 |
+
value: 18.608
|
| 1498 |
+
- type: mrr_at_1000
|
| 1499 |
+
value: 18.695999999999998
|
| 1500 |
+
- type: mrr_at_3
|
| 1501 |
+
value: 15.481
|
| 1502 |
+
- type: mrr_at_5
|
| 1503 |
+
value: 16.659
|
| 1504 |
+
- type: ndcg_at_1
|
| 1505 |
+
value: 11.628
|
| 1506 |
+
- type: ndcg_at_10
|
| 1507 |
+
value: 20.028000000000002
|
| 1508 |
+
- type: ndcg_at_100
|
| 1509 |
+
value: 25.505
|
| 1510 |
+
- type: ndcg_at_1000
|
| 1511 |
+
value: 28.288000000000004
|
| 1512 |
+
- type: ndcg_at_3
|
| 1513 |
+
value: 15.603
|
| 1514 |
+
- type: ndcg_at_5
|
| 1515 |
+
value: 17.642
|
| 1516 |
+
- type: precision_at_1
|
| 1517 |
+
value: 11.628
|
| 1518 |
+
- type: precision_at_10
|
| 1519 |
+
value: 3.5589999999999997
|
| 1520 |
+
- type: precision_at_100
|
| 1521 |
+
value: 0.664
|
| 1522 |
+
- type: precision_at_1000
|
| 1523 |
+
value: 0.092
|
| 1524 |
+
- type: precision_at_3
|
| 1525 |
+
value: 7.109999999999999
|
| 1526 |
+
- type: precision_at_5
|
| 1527 |
+
value: 5.401
|
| 1528 |
+
- type: recall_at_1
|
| 1529 |
+
value: 10.363
|
| 1530 |
+
- type: recall_at_10
|
| 1531 |
+
value: 30.586000000000002
|
| 1532 |
+
- type: recall_at_100
|
| 1533 |
+
value: 56.43
|
| 1534 |
+
- type: recall_at_1000
|
| 1535 |
+
value: 78.142
|
| 1536 |
+
- type: recall_at_3
|
| 1537 |
+
value: 18.651
|
| 1538 |
+
- type: recall_at_5
|
| 1539 |
+
value: 23.493
|
| 1540 |
+
- task:
|
| 1541 |
+
type: Retrieval
|
| 1542 |
+
dataset:
|
| 1543 |
+
type: deepset/germandpr
|
| 1544 |
+
name: MTEB GermanDPR
|
| 1545 |
+
config: default
|
| 1546 |
+
split: test
|
| 1547 |
+
revision: 5129d02422a66be600ac89cd3e8531b4f97d347d
|
| 1548 |
+
metrics:
|
| 1549 |
+
- type: map_at_1
|
| 1550 |
+
value: 60.78
|
| 1551 |
+
- type: map_at_10
|
| 1552 |
+
value: 73.91499999999999
|
| 1553 |
+
- type: map_at_100
|
| 1554 |
+
value: 74.089
|
| 1555 |
+
- type: map_at_1000
|
| 1556 |
+
value: 74.09400000000001
|
| 1557 |
+
- type: map_at_3
|
| 1558 |
+
value: 71.87
|
| 1559 |
+
- type: map_at_5
|
| 1560 |
+
value: 73.37700000000001
|
| 1561 |
+
- type: mrr_at_1
|
| 1562 |
+
value: 60.78
|
| 1563 |
+
- type: mrr_at_10
|
| 1564 |
+
value: 73.91499999999999
|
| 1565 |
+
- type: mrr_at_100
|
| 1566 |
+
value: 74.089
|
| 1567 |
+
- type: mrr_at_1000
|
| 1568 |
+
value: 74.09400000000001
|
| 1569 |
+
- type: mrr_at_3
|
| 1570 |
+
value: 71.87
|
| 1571 |
+
- type: mrr_at_5
|
| 1572 |
+
value: 73.37700000000001
|
| 1573 |
+
- type: ndcg_at_1
|
| 1574 |
+
value: 60.78
|
| 1575 |
+
- type: ndcg_at_10
|
| 1576 |
+
value: 79.35600000000001
|
| 1577 |
+
- type: ndcg_at_100
|
| 1578 |
+
value: 80.077
|
| 1579 |
+
- type: ndcg_at_1000
|
| 1580 |
+
value: 80.203
|
| 1581 |
+
- type: ndcg_at_3
|
| 1582 |
+
value: 75.393
|
| 1583 |
+
- type: ndcg_at_5
|
| 1584 |
+
value: 78.077
|
| 1585 |
+
- type: precision_at_1
|
| 1586 |
+
value: 60.78
|
| 1587 |
+
- type: precision_at_10
|
| 1588 |
+
value: 9.59
|
| 1589 |
+
- type: precision_at_100
|
| 1590 |
+
value: 0.9900000000000001
|
| 1591 |
+
- type: precision_at_1000
|
| 1592 |
+
value: 0.1
|
| 1593 |
+
- type: precision_at_3
|
| 1594 |
+
value: 28.52
|
| 1595 |
+
- type: precision_at_5
|
| 1596 |
+
value: 18.4
|
| 1597 |
+
- type: recall_at_1
|
| 1598 |
+
value: 60.78
|
| 1599 |
+
- type: recall_at_10
|
| 1600 |
+
value: 95.902
|
| 1601 |
+
- type: recall_at_100
|
| 1602 |
+
value: 99.024
|
| 1603 |
+
- type: recall_at_1000
|
| 1604 |
+
value: 100.0
|
| 1605 |
+
- type: recall_at_3
|
| 1606 |
+
value: 85.56099999999999
|
| 1607 |
+
- type: recall_at_5
|
| 1608 |
+
value: 92.0
|
| 1609 |
+
- task:
|
| 1610 |
+
type: STS
|
| 1611 |
+
dataset:
|
| 1612 |
+
type: jinaai/german-STSbenchmark
|
| 1613 |
+
name: MTEB GermanSTSBenchmark
|
| 1614 |
+
config: default
|
| 1615 |
+
split: test
|
| 1616 |
+
revision: 49d9b423b996fea62b483f9ee6dfb5ec233515ca
|
| 1617 |
+
metrics:
|
| 1618 |
+
- type: cos_sim_pearson
|
| 1619 |
+
value: 88.49524420894356
|
| 1620 |
+
- type: cos_sim_spearman
|
| 1621 |
+
value: 88.32407839427714
|
| 1622 |
+
- type: euclidean_pearson
|
| 1623 |
+
value: 87.25098779877104
|
| 1624 |
+
- type: euclidean_spearman
|
| 1625 |
+
value: 88.22738098593608
|
| 1626 |
+
- type: manhattan_pearson
|
| 1627 |
+
value: 87.23872691839607
|
| 1628 |
+
- type: manhattan_spearman
|
| 1629 |
+
value: 88.2002968380165
|
| 1630 |
+
- task:
|
| 1631 |
+
type: Retrieval
|
| 1632 |
+
dataset:
|
| 1633 |
+
type: hotpotqa
|
| 1634 |
+
name: MTEB HotpotQA
|
| 1635 |
+
config: default
|
| 1636 |
+
split: test
|
| 1637 |
+
revision: None
|
| 1638 |
+
metrics:
|
| 1639 |
+
- type: map_at_1
|
| 1640 |
+
value: 31.81
|
| 1641 |
+
- type: map_at_10
|
| 1642 |
+
value: 46.238
|
| 1643 |
+
- type: map_at_100
|
| 1644 |
+
value: 47.141
|
| 1645 |
+
- type: map_at_1000
|
| 1646 |
+
value: 47.213
|
| 1647 |
+
- type: map_at_3
|
| 1648 |
+
value: 43.248999999999995
|
| 1649 |
+
- type: map_at_5
|
| 1650 |
+
value: 45.078
|
| 1651 |
+
- type: mrr_at_1
|
| 1652 |
+
value: 63.619
|
| 1653 |
+
- type: mrr_at_10
|
| 1654 |
+
value: 71.279
|
| 1655 |
+
- type: mrr_at_100
|
| 1656 |
+
value: 71.648
|
| 1657 |
+
- type: mrr_at_1000
|
| 1658 |
+
value: 71.665
|
| 1659 |
+
- type: mrr_at_3
|
| 1660 |
+
value: 69.76599999999999
|
| 1661 |
+
- type: mrr_at_5
|
| 1662 |
+
value: 70.743
|
| 1663 |
+
- type: ndcg_at_1
|
| 1664 |
+
value: 63.619
|
| 1665 |
+
- type: ndcg_at_10
|
| 1666 |
+
value: 55.38999999999999
|
| 1667 |
+
- type: ndcg_at_100
|
| 1668 |
+
value: 58.80800000000001
|
| 1669 |
+
- type: ndcg_at_1000
|
| 1670 |
+
value: 60.331999999999994
|
| 1671 |
+
- type: ndcg_at_3
|
| 1672 |
+
value: 50.727
|
| 1673 |
+
- type: ndcg_at_5
|
| 1674 |
+
value: 53.284
|
| 1675 |
+
- type: precision_at_1
|
| 1676 |
+
value: 63.619
|
| 1677 |
+
- type: precision_at_10
|
| 1678 |
+
value: 11.668000000000001
|
| 1679 |
+
- type: precision_at_100
|
| 1680 |
+
value: 1.434
|
| 1681 |
+
- type: precision_at_1000
|
| 1682 |
+
value: 0.164
|
| 1683 |
+
- type: precision_at_3
|
| 1684 |
+
value: 32.001000000000005
|
| 1685 |
+
- type: precision_at_5
|
| 1686 |
+
value: 21.223
|
| 1687 |
+
- type: recall_at_1
|
| 1688 |
+
value: 31.81
|
| 1689 |
+
- type: recall_at_10
|
| 1690 |
+
value: 58.339
|
| 1691 |
+
- type: recall_at_100
|
| 1692 |
+
value: 71.708
|
| 1693 |
+
- type: recall_at_1000
|
| 1694 |
+
value: 81.85
|
| 1695 |
+
- type: recall_at_3
|
| 1696 |
+
value: 48.001
|
| 1697 |
+
- type: recall_at_5
|
| 1698 |
+
value: 53.059
|
| 1699 |
+
- task:
|
| 1700 |
+
type: Classification
|
| 1701 |
+
dataset:
|
| 1702 |
+
type: mteb/imdb
|
| 1703 |
+
name: MTEB ImdbClassification
|
| 1704 |
+
config: default
|
| 1705 |
+
split: test
|
| 1706 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
| 1707 |
+
metrics:
|
| 1708 |
+
- type: accuracy
|
| 1709 |
+
value: 68.60640000000001
|
| 1710 |
+
- type: ap
|
| 1711 |
+
value: 62.84296904042086
|
| 1712 |
+
- type: f1
|
| 1713 |
+
value: 68.50643633327537
|
| 1714 |
+
- task:
|
| 1715 |
+
type: Reranking
|
| 1716 |
+
dataset:
|
| 1717 |
+
type: jinaai/miracl
|
| 1718 |
+
name: MTEB MIRACL
|
| 1719 |
+
config: default
|
| 1720 |
+
split: test
|
| 1721 |
+
revision: 8741c3b61cd36ed9ca1b3d4203543a41793239e2
|
| 1722 |
+
metrics:
|
| 1723 |
+
- type: map
|
| 1724 |
+
value: 64.29704335389768
|
| 1725 |
+
- type: mrr
|
| 1726 |
+
value: 72.11962197159565
|
| 1727 |
+
- task:
|
| 1728 |
+
type: Classification
|
| 1729 |
+
dataset:
|
| 1730 |
+
type: mteb/mtop_domain
|
| 1731 |
+
name: MTEB MTOPDomainClassification (en)
|
| 1732 |
+
config: en
|
| 1733 |
+
split: test
|
| 1734 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
| 1735 |
+
metrics:
|
| 1736 |
+
- type: accuracy
|
| 1737 |
+
value: 89.3844049247606
|
| 1738 |
+
- type: f1
|
| 1739 |
+
value: 89.2124328528015
|
| 1740 |
+
- task:
|
| 1741 |
+
type: Classification
|
| 1742 |
+
dataset:
|
| 1743 |
+
type: mteb/mtop_domain
|
| 1744 |
+
name: MTEB MTOPDomainClassification (de)
|
| 1745 |
+
config: de
|
| 1746 |
+
split: test
|
| 1747 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
| 1748 |
+
metrics:
|
| 1749 |
+
- type: accuracy
|
| 1750 |
+
value: 88.36855452240067
|
| 1751 |
+
- type: f1
|
| 1752 |
+
value: 87.35458822097442
|
| 1753 |
+
- task:
|
| 1754 |
+
type: Classification
|
| 1755 |
+
dataset:
|
| 1756 |
+
type: mteb/mtop_intent
|
| 1757 |
+
name: MTEB MTOPIntentClassification (en)
|
| 1758 |
+
config: en
|
| 1759 |
+
split: test
|
| 1760 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
| 1761 |
+
metrics:
|
| 1762 |
+
- type: accuracy
|
| 1763 |
+
value: 66.48654810761514
|
| 1764 |
+
- type: f1
|
| 1765 |
+
value: 50.07229882504409
|
| 1766 |
+
- task:
|
| 1767 |
+
type: Classification
|
| 1768 |
+
dataset:
|
| 1769 |
+
type: mteb/mtop_intent
|
| 1770 |
+
name: MTEB MTOPIntentClassification (de)
|
| 1771 |
+
config: de
|
| 1772 |
+
split: test
|
| 1773 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
| 1774 |
+
metrics:
|
| 1775 |
+
- type: accuracy
|
| 1776 |
+
value: 63.832065370526905
|
| 1777 |
+
- type: f1
|
| 1778 |
+
value: 46.283579383385806
|
| 1779 |
+
- task:
|
| 1780 |
+
type: Classification
|
| 1781 |
+
dataset:
|
| 1782 |
+
type: mteb/amazon_massive_intent
|
| 1783 |
+
name: MTEB MassiveIntentClassification (de)
|
| 1784 |
+
config: de
|
| 1785 |
+
split: test
|
| 1786 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
| 1787 |
+
metrics:
|
| 1788 |
+
- type: accuracy
|
| 1789 |
+
value: 63.89038332212509
|
| 1790 |
+
- type: f1
|
| 1791 |
+
value: 61.86279849685129
|
| 1792 |
+
- task:
|
| 1793 |
+
type: Classification
|
| 1794 |
+
dataset:
|
| 1795 |
+
type: mteb/amazon_massive_intent
|
| 1796 |
+
name: MTEB MassiveIntentClassification (en)
|
| 1797 |
+
config: en
|
| 1798 |
+
split: test
|
| 1799 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
| 1800 |
+
metrics:
|
| 1801 |
+
- type: accuracy
|
| 1802 |
+
value: 69.11230665770006
|
| 1803 |
+
- type: f1
|
| 1804 |
+
value: 67.44780095350535
|
| 1805 |
+
- task:
|
| 1806 |
+
type: Classification
|
| 1807 |
+
dataset:
|
| 1808 |
+
type: mteb/amazon_massive_scenario
|
| 1809 |
+
name: MTEB MassiveScenarioClassification (de)
|
| 1810 |
+
config: de
|
| 1811 |
+
split: test
|
| 1812 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
| 1813 |
+
metrics:
|
| 1814 |
+
- type: accuracy
|
| 1815 |
+
value: 71.25084061869536
|
| 1816 |
+
- type: f1
|
| 1817 |
+
value: 71.43965023016408
|
| 1818 |
+
- task:
|
| 1819 |
+
type: Classification
|
| 1820 |
+
dataset:
|
| 1821 |
+
type: mteb/amazon_massive_scenario
|
| 1822 |
+
name: MTEB MassiveScenarioClassification (en)
|
| 1823 |
+
config: en
|
| 1824 |
+
split: test
|
| 1825 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
| 1826 |
+
metrics:
|
| 1827 |
+
- type: accuracy
|
| 1828 |
+
value: 73.73907195696032
|
| 1829 |
+
- type: f1
|
| 1830 |
+
value: 73.69920814839061
|
| 1831 |
+
- task:
|
| 1832 |
+
type: Clustering
|
| 1833 |
+
dataset:
|
| 1834 |
+
type: mteb/medrxiv-clustering-p2p
|
| 1835 |
+
name: MTEB MedrxivClusteringP2P
|
| 1836 |
+
config: default
|
| 1837 |
+
split: test
|
| 1838 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
| 1839 |
+
metrics:
|
| 1840 |
+
- type: v_measure
|
| 1841 |
+
value: 31.32577306498249
|
| 1842 |
+
- task:
|
| 1843 |
+
type: Clustering
|
| 1844 |
+
dataset:
|
| 1845 |
+
type: mteb/medrxiv-clustering-s2s
|
| 1846 |
+
name: MTEB MedrxivClusteringS2S
|
| 1847 |
+
config: default
|
| 1848 |
+
split: test
|
| 1849 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
| 1850 |
+
metrics:
|
| 1851 |
+
- type: v_measure
|
| 1852 |
+
value: 28.759349326367783
|
| 1853 |
+
- task:
|
| 1854 |
+
type: Reranking
|
| 1855 |
+
dataset:
|
| 1856 |
+
type: mteb/mind_small
|
| 1857 |
+
name: MTEB MindSmallReranking
|
| 1858 |
+
config: default
|
| 1859 |
+
split: test
|
| 1860 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
| 1861 |
+
metrics:
|
| 1862 |
+
- type: map
|
| 1863 |
+
value: 30.401342674703425
|
| 1864 |
+
- type: mrr
|
| 1865 |
+
value: 31.384379585660987
|
| 1866 |
+
- task:
|
| 1867 |
+
type: Retrieval
|
| 1868 |
+
dataset:
|
| 1869 |
+
type: nfcorpus
|
| 1870 |
+
name: MTEB NFCorpus
|
| 1871 |
+
config: default
|
| 1872 |
+
split: test
|
| 1873 |
+
revision: None
|
| 1874 |
+
metrics:
|
| 1875 |
+
- type: map_at_1
|
| 1876 |
+
value: 4.855
|
| 1877 |
+
- type: map_at_10
|
| 1878 |
+
value: 10.01
|
| 1879 |
+
- type: map_at_100
|
| 1880 |
+
value: 12.461
|
| 1881 |
+
- type: map_at_1000
|
| 1882 |
+
value: 13.776
|
| 1883 |
+
- type: map_at_3
|
| 1884 |
+
value: 7.252
|
| 1885 |
+
- type: map_at_5
|
| 1886 |
+
value: 8.679
|
| 1887 |
+
- type: mrr_at_1
|
| 1888 |
+
value: 41.176
|
| 1889 |
+
- type: mrr_at_10
|
| 1890 |
+
value: 49.323
|
| 1891 |
+
- type: mrr_at_100
|
| 1892 |
+
value: 49.954
|
| 1893 |
+
- type: mrr_at_1000
|
| 1894 |
+
value: 49.997
|
| 1895 |
+
- type: mrr_at_3
|
| 1896 |
+
value: 46.904
|
| 1897 |
+
- type: mrr_at_5
|
| 1898 |
+
value: 48.375
|
| 1899 |
+
- type: ndcg_at_1
|
| 1900 |
+
value: 39.318999999999996
|
| 1901 |
+
- type: ndcg_at_10
|
| 1902 |
+
value: 28.607
|
| 1903 |
+
- type: ndcg_at_100
|
| 1904 |
+
value: 26.554
|
| 1905 |
+
- type: ndcg_at_1000
|
| 1906 |
+
value: 35.731
|
| 1907 |
+
- type: ndcg_at_3
|
| 1908 |
+
value: 32.897999999999996
|
| 1909 |
+
- type: ndcg_at_5
|
| 1910 |
+
value: 31.53
|
| 1911 |
+
- type: precision_at_1
|
| 1912 |
+
value: 41.176
|
| 1913 |
+
- type: precision_at_10
|
| 1914 |
+
value: 20.867
|
| 1915 |
+
- type: precision_at_100
|
| 1916 |
+
value: 6.796
|
| 1917 |
+
- type: precision_at_1000
|
| 1918 |
+
value: 1.983
|
| 1919 |
+
- type: precision_at_3
|
| 1920 |
+
value: 30.547
|
| 1921 |
+
- type: precision_at_5
|
| 1922 |
+
value: 27.245
|
| 1923 |
+
- type: recall_at_1
|
| 1924 |
+
value: 4.855
|
| 1925 |
+
- type: recall_at_10
|
| 1926 |
+
value: 14.08
|
| 1927 |
+
- type: recall_at_100
|
| 1928 |
+
value: 28.188000000000002
|
| 1929 |
+
- type: recall_at_1000
|
| 1930 |
+
value: 60.07900000000001
|
| 1931 |
+
- type: recall_at_3
|
| 1932 |
+
value: 7.947
|
| 1933 |
+
- type: recall_at_5
|
| 1934 |
+
value: 10.786
|
| 1935 |
+
- task:
|
| 1936 |
+
type: Retrieval
|
| 1937 |
+
dataset:
|
| 1938 |
+
type: nq
|
| 1939 |
+
name: MTEB NQ
|
| 1940 |
+
config: default
|
| 1941 |
+
split: test
|
| 1942 |
+
revision: None
|
| 1943 |
+
metrics:
|
| 1944 |
+
- type: map_at_1
|
| 1945 |
+
value: 26.906999999999996
|
| 1946 |
+
- type: map_at_10
|
| 1947 |
+
value: 41.147
|
| 1948 |
+
- type: map_at_100
|
| 1949 |
+
value: 42.269
|
| 1950 |
+
- type: map_at_1000
|
| 1951 |
+
value: 42.308
|
| 1952 |
+
- type: map_at_3
|
| 1953 |
+
value: 36.638999999999996
|
| 1954 |
+
- type: map_at_5
|
| 1955 |
+
value: 39.285
|
| 1956 |
+
- type: mrr_at_1
|
| 1957 |
+
value: 30.359
|
| 1958 |
+
- type: mrr_at_10
|
| 1959 |
+
value: 43.607
|
| 1960 |
+
- type: mrr_at_100
|
| 1961 |
+
value: 44.454
|
| 1962 |
+
- type: mrr_at_1000
|
| 1963 |
+
value: 44.481
|
| 1964 |
+
- type: mrr_at_3
|
| 1965 |
+
value: 39.644
|
| 1966 |
+
- type: mrr_at_5
|
| 1967 |
+
value: 42.061
|
| 1968 |
+
- type: ndcg_at_1
|
| 1969 |
+
value: 30.330000000000002
|
| 1970 |
+
- type: ndcg_at_10
|
| 1971 |
+
value: 48.899
|
| 1972 |
+
- type: ndcg_at_100
|
| 1973 |
+
value: 53.612
|
| 1974 |
+
- type: ndcg_at_1000
|
| 1975 |
+
value: 54.51200000000001
|
| 1976 |
+
- type: ndcg_at_3
|
| 1977 |
+
value: 40.262
|
| 1978 |
+
- type: ndcg_at_5
|
| 1979 |
+
value: 44.787
|
| 1980 |
+
- type: precision_at_1
|
| 1981 |
+
value: 30.330000000000002
|
| 1982 |
+
- type: precision_at_10
|
| 1983 |
+
value: 8.323
|
| 1984 |
+
- type: precision_at_100
|
| 1985 |
+
value: 1.0959999999999999
|
| 1986 |
+
- type: precision_at_1000
|
| 1987 |
+
value: 0.11800000000000001
|
| 1988 |
+
- type: precision_at_3
|
| 1989 |
+
value: 18.395
|
| 1990 |
+
- type: precision_at_5
|
| 1991 |
+
value: 13.627
|
| 1992 |
+
- type: recall_at_1
|
| 1993 |
+
value: 26.906999999999996
|
| 1994 |
+
- type: recall_at_10
|
| 1995 |
+
value: 70.215
|
| 1996 |
+
- type: recall_at_100
|
| 1997 |
+
value: 90.61200000000001
|
| 1998 |
+
- type: recall_at_1000
|
| 1999 |
+
value: 97.294
|
| 2000 |
+
- type: recall_at_3
|
| 2001 |
+
value: 47.784
|
| 2002 |
+
- type: recall_at_5
|
| 2003 |
+
value: 58.251
|
| 2004 |
+
- task:
|
| 2005 |
+
type: PairClassification
|
| 2006 |
+
dataset:
|
| 2007 |
+
type: paws-x
|
| 2008 |
+
name: MTEB PawsX
|
| 2009 |
+
config: default
|
| 2010 |
+
split: test
|
| 2011 |
+
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
|
| 2012 |
+
metrics:
|
| 2013 |
+
- type: cos_sim_accuracy
|
| 2014 |
+
value: 60.5
|
| 2015 |
+
- type: cos_sim_ap
|
| 2016 |
+
value: 57.606096528877494
|
| 2017 |
+
- type: cos_sim_f1
|
| 2018 |
+
value: 62.24240307369892
|
| 2019 |
+
- type: cos_sim_precision
|
| 2020 |
+
value: 45.27439024390244
|
| 2021 |
+
- type: cos_sim_recall
|
| 2022 |
+
value: 99.55307262569832
|
| 2023 |
+
- type: dot_accuracy
|
| 2024 |
+
value: 57.699999999999996
|
| 2025 |
+
- type: dot_ap
|
| 2026 |
+
value: 51.289351057160616
|
| 2027 |
+
- type: dot_f1
|
| 2028 |
+
value: 62.25953130465197
|
| 2029 |
+
- type: dot_precision
|
| 2030 |
+
value: 45.31568228105906
|
| 2031 |
+
- type: dot_recall
|
| 2032 |
+
value: 99.4413407821229
|
| 2033 |
+
- type: euclidean_accuracy
|
| 2034 |
+
value: 60.45
|
| 2035 |
+
- type: euclidean_ap
|
| 2036 |
+
value: 57.616461421424034
|
| 2037 |
+
- type: euclidean_f1
|
| 2038 |
+
value: 62.313697657913416
|
| 2039 |
+
- type: euclidean_precision
|
| 2040 |
+
value: 45.657826313052524
|
| 2041 |
+
- type: euclidean_recall
|
| 2042 |
+
value: 98.10055865921787
|
| 2043 |
+
- type: manhattan_accuracy
|
| 2044 |
+
value: 60.3
|
| 2045 |
+
- type: manhattan_ap
|
| 2046 |
+
value: 57.580565271667325
|
| 2047 |
+
- type: manhattan_f1
|
| 2048 |
+
value: 62.24240307369892
|
| 2049 |
+
- type: manhattan_precision
|
| 2050 |
+
value: 45.27439024390244
|
| 2051 |
+
- type: manhattan_recall
|
| 2052 |
+
value: 99.55307262569832
|
| 2053 |
+
- type: max_accuracy
|
| 2054 |
+
value: 60.5
|
| 2055 |
+
- type: max_ap
|
| 2056 |
+
value: 57.616461421424034
|
| 2057 |
+
- type: max_f1
|
| 2058 |
+
value: 62.313697657913416
|
| 2059 |
+
- task:
|
| 2060 |
+
type: Retrieval
|
| 2061 |
+
dataset:
|
| 2062 |
+
type: quora
|
| 2063 |
+
name: MTEB QuoraRetrieval
|
| 2064 |
+
config: default
|
| 2065 |
+
split: test
|
| 2066 |
+
revision: None
|
| 2067 |
+
metrics:
|
| 2068 |
+
- type: map_at_1
|
| 2069 |
+
value: 70.21300000000001
|
| 2070 |
+
- type: map_at_10
|
| 2071 |
+
value: 84.136
|
| 2072 |
+
- type: map_at_100
|
| 2073 |
+
value: 84.796
|
| 2074 |
+
- type: map_at_1000
|
| 2075 |
+
value: 84.812
|
| 2076 |
+
- type: map_at_3
|
| 2077 |
+
value: 81.182
|
| 2078 |
+
- type: map_at_5
|
| 2079 |
+
value: 83.027
|
| 2080 |
+
- type: mrr_at_1
|
| 2081 |
+
value: 80.91000000000001
|
| 2082 |
+
- type: mrr_at_10
|
| 2083 |
+
value: 87.155
|
| 2084 |
+
- type: mrr_at_100
|
| 2085 |
+
value: 87.27000000000001
|
| 2086 |
+
- type: mrr_at_1000
|
| 2087 |
+
value: 87.271
|
| 2088 |
+
- type: mrr_at_3
|
| 2089 |
+
value: 86.158
|
| 2090 |
+
- type: mrr_at_5
|
| 2091 |
+
value: 86.828
|
| 2092 |
+
- type: ndcg_at_1
|
| 2093 |
+
value: 80.88
|
| 2094 |
+
- type: ndcg_at_10
|
| 2095 |
+
value: 87.926
|
| 2096 |
+
- type: ndcg_at_100
|
| 2097 |
+
value: 89.223
|
| 2098 |
+
- type: ndcg_at_1000
|
| 2099 |
+
value: 89.321
|
| 2100 |
+
- type: ndcg_at_3
|
| 2101 |
+
value: 85.036
|
| 2102 |
+
- type: ndcg_at_5
|
| 2103 |
+
value: 86.614
|
| 2104 |
+
- type: precision_at_1
|
| 2105 |
+
value: 80.88
|
| 2106 |
+
- type: precision_at_10
|
| 2107 |
+
value: 13.350000000000001
|
| 2108 |
+
- type: precision_at_100
|
| 2109 |
+
value: 1.5310000000000001
|
| 2110 |
+
- type: precision_at_1000
|
| 2111 |
+
value: 0.157
|
| 2112 |
+
- type: precision_at_3
|
| 2113 |
+
value: 37.173
|
| 2114 |
+
- type: precision_at_5
|
| 2115 |
+
value: 24.476
|
| 2116 |
+
- type: recall_at_1
|
| 2117 |
+
value: 70.21300000000001
|
| 2118 |
+
- type: recall_at_10
|
| 2119 |
+
value: 95.12
|
| 2120 |
+
- type: recall_at_100
|
| 2121 |
+
value: 99.535
|
| 2122 |
+
- type: recall_at_1000
|
| 2123 |
+
value: 99.977
|
| 2124 |
+
- type: recall_at_3
|
| 2125 |
+
value: 86.833
|
| 2126 |
+
- type: recall_at_5
|
| 2127 |
+
value: 91.26100000000001
|
| 2128 |
+
- task:
|
| 2129 |
+
type: Clustering
|
| 2130 |
+
dataset:
|
| 2131 |
+
type: mteb/reddit-clustering
|
| 2132 |
+
name: MTEB RedditClustering
|
| 2133 |
+
config: default
|
| 2134 |
+
split: test
|
| 2135 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
| 2136 |
+
metrics:
|
| 2137 |
+
- type: v_measure
|
| 2138 |
+
value: 47.754688783184875
|
| 2139 |
+
- task:
|
| 2140 |
+
type: Clustering
|
| 2141 |
+
dataset:
|
| 2142 |
+
type: mteb/reddit-clustering-p2p
|
| 2143 |
+
name: MTEB RedditClusteringP2P
|
| 2144 |
+
config: default
|
| 2145 |
+
split: test
|
| 2146 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
| 2147 |
+
metrics:
|
| 2148 |
+
- type: v_measure
|
| 2149 |
+
value: 54.875736374329364
|
| 2150 |
+
- task:
|
| 2151 |
+
type: Retrieval
|
| 2152 |
+
dataset:
|
| 2153 |
+
type: scidocs
|
| 2154 |
+
name: MTEB SCIDOCS
|
| 2155 |
+
config: default
|
| 2156 |
+
split: test
|
| 2157 |
+
revision: None
|
| 2158 |
+
metrics:
|
| 2159 |
+
- type: map_at_1
|
| 2160 |
+
value: 3.773
|
| 2161 |
+
- type: map_at_10
|
| 2162 |
+
value: 9.447
|
| 2163 |
+
- type: map_at_100
|
| 2164 |
+
value: 11.1
|
| 2165 |
+
- type: map_at_1000
|
| 2166 |
+
value: 11.37
|
| 2167 |
+
- type: map_at_3
|
| 2168 |
+
value: 6.787
|
| 2169 |
+
- type: map_at_5
|
| 2170 |
+
value: 8.077
|
| 2171 |
+
- type: mrr_at_1
|
| 2172 |
+
value: 18.5
|
| 2173 |
+
- type: mrr_at_10
|
| 2174 |
+
value: 28.227000000000004
|
| 2175 |
+
- type: mrr_at_100
|
| 2176 |
+
value: 29.445
|
| 2177 |
+
- type: mrr_at_1000
|
| 2178 |
+
value: 29.515
|
| 2179 |
+
- type: mrr_at_3
|
| 2180 |
+
value: 25.2
|
| 2181 |
+
- type: mrr_at_5
|
| 2182 |
+
value: 27.055
|
| 2183 |
+
- type: ndcg_at_1
|
| 2184 |
+
value: 18.5
|
| 2185 |
+
- type: ndcg_at_10
|
| 2186 |
+
value: 16.29
|
| 2187 |
+
- type: ndcg_at_100
|
| 2188 |
+
value: 23.250999999999998
|
| 2189 |
+
- type: ndcg_at_1000
|
| 2190 |
+
value: 28.445999999999998
|
| 2191 |
+
- type: ndcg_at_3
|
| 2192 |
+
value: 15.376000000000001
|
| 2193 |
+
- type: ndcg_at_5
|
| 2194 |
+
value: 13.528
|
| 2195 |
+
- type: precision_at_1
|
| 2196 |
+
value: 18.5
|
| 2197 |
+
- type: precision_at_10
|
| 2198 |
+
value: 8.51
|
| 2199 |
+
- type: precision_at_100
|
| 2200 |
+
value: 1.855
|
| 2201 |
+
- type: precision_at_1000
|
| 2202 |
+
value: 0.311
|
| 2203 |
+
- type: precision_at_3
|
| 2204 |
+
value: 14.533
|
| 2205 |
+
- type: precision_at_5
|
| 2206 |
+
value: 12.0
|
| 2207 |
+
- type: recall_at_1
|
| 2208 |
+
value: 3.773
|
| 2209 |
+
- type: recall_at_10
|
| 2210 |
+
value: 17.282
|
| 2211 |
+
- type: recall_at_100
|
| 2212 |
+
value: 37.645
|
| 2213 |
+
- type: recall_at_1000
|
| 2214 |
+
value: 63.138000000000005
|
| 2215 |
+
- type: recall_at_3
|
| 2216 |
+
value: 8.853
|
| 2217 |
+
- type: recall_at_5
|
| 2218 |
+
value: 12.168
|
| 2219 |
+
- task:
|
| 2220 |
+
type: STS
|
| 2221 |
+
dataset:
|
| 2222 |
+
type: mteb/sickr-sts
|
| 2223 |
+
name: MTEB SICK-R
|
| 2224 |
+
config: default
|
| 2225 |
+
split: test
|
| 2226 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
| 2227 |
+
metrics:
|
| 2228 |
+
- type: cos_sim_pearson
|
| 2229 |
+
value: 85.32789517976525
|
| 2230 |
+
- type: cos_sim_spearman
|
| 2231 |
+
value: 80.32750384145629
|
| 2232 |
+
- type: euclidean_pearson
|
| 2233 |
+
value: 81.5025131452508
|
| 2234 |
+
- type: euclidean_spearman
|
| 2235 |
+
value: 80.24797115147175
|
| 2236 |
+
- type: manhattan_pearson
|
| 2237 |
+
value: 81.51634463412002
|
| 2238 |
+
- type: manhattan_spearman
|
| 2239 |
+
value: 80.24614721495055
|
| 2240 |
+
- task:
|
| 2241 |
+
type: STS
|
| 2242 |
+
dataset:
|
| 2243 |
+
type: mteb/sts12-sts
|
| 2244 |
+
name: MTEB STS12
|
| 2245 |
+
config: default
|
| 2246 |
+
split: test
|
| 2247 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
| 2248 |
+
metrics:
|
| 2249 |
+
- type: cos_sim_pearson
|
| 2250 |
+
value: 88.47050448992432
|
| 2251 |
+
- type: cos_sim_spearman
|
| 2252 |
+
value: 80.58919997743621
|
| 2253 |
+
- type: euclidean_pearson
|
| 2254 |
+
value: 85.83258918113664
|
| 2255 |
+
- type: euclidean_spearman
|
| 2256 |
+
value: 80.97441389240902
|
| 2257 |
+
- type: manhattan_pearson
|
| 2258 |
+
value: 85.7798262013878
|
| 2259 |
+
- type: manhattan_spearman
|
| 2260 |
+
value: 80.97208703064196
|
| 2261 |
+
- task:
|
| 2262 |
+
type: STS
|
| 2263 |
+
dataset:
|
| 2264 |
+
type: mteb/sts13-sts
|
| 2265 |
+
name: MTEB STS13
|
| 2266 |
+
config: default
|
| 2267 |
+
split: test
|
| 2268 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
| 2269 |
+
metrics:
|
| 2270 |
+
- type: cos_sim_pearson
|
| 2271 |
+
value: 85.95341439711532
|
| 2272 |
+
- type: cos_sim_spearman
|
| 2273 |
+
value: 86.59127484634989
|
| 2274 |
+
- type: euclidean_pearson
|
| 2275 |
+
value: 85.57850603454227
|
| 2276 |
+
- type: euclidean_spearman
|
| 2277 |
+
value: 86.47130477363419
|
| 2278 |
+
- type: manhattan_pearson
|
| 2279 |
+
value: 85.59387925447652
|
| 2280 |
+
- type: manhattan_spearman
|
| 2281 |
+
value: 86.50665427391583
|
| 2282 |
+
- task:
|
| 2283 |
+
type: STS
|
| 2284 |
+
dataset:
|
| 2285 |
+
type: mteb/sts14-sts
|
| 2286 |
+
name: MTEB STS14
|
| 2287 |
+
config: default
|
| 2288 |
+
split: test
|
| 2289 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
| 2290 |
+
metrics:
|
| 2291 |
+
- type: cos_sim_pearson
|
| 2292 |
+
value: 85.39810909161844
|
| 2293 |
+
- type: cos_sim_spearman
|
| 2294 |
+
value: 82.98595295546008
|
| 2295 |
+
- type: euclidean_pearson
|
| 2296 |
+
value: 84.04681129969951
|
| 2297 |
+
- type: euclidean_spearman
|
| 2298 |
+
value: 82.98197460689866
|
| 2299 |
+
- type: manhattan_pearson
|
| 2300 |
+
value: 83.9918798171185
|
| 2301 |
+
- type: manhattan_spearman
|
| 2302 |
+
value: 82.91148131768082
|
| 2303 |
+
- task:
|
| 2304 |
+
type: STS
|
| 2305 |
+
dataset:
|
| 2306 |
+
type: mteb/sts15-sts
|
| 2307 |
+
name: MTEB STS15
|
| 2308 |
+
config: default
|
| 2309 |
+
split: test
|
| 2310 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
| 2311 |
+
metrics:
|
| 2312 |
+
- type: cos_sim_pearson
|
| 2313 |
+
value: 88.02072712147692
|
| 2314 |
+
- type: cos_sim_spearman
|
| 2315 |
+
value: 88.78821332623012
|
| 2316 |
+
- type: euclidean_pearson
|
| 2317 |
+
value: 88.12132045572747
|
| 2318 |
+
- type: euclidean_spearman
|
| 2319 |
+
value: 88.74273451067364
|
| 2320 |
+
- type: manhattan_pearson
|
| 2321 |
+
value: 88.05431550059166
|
| 2322 |
+
- type: manhattan_spearman
|
| 2323 |
+
value: 88.67610233020723
|
| 2324 |
+
- task:
|
| 2325 |
+
type: STS
|
| 2326 |
+
dataset:
|
| 2327 |
+
type: mteb/sts16-sts
|
| 2328 |
+
name: MTEB STS16
|
| 2329 |
+
config: default
|
| 2330 |
+
split: test
|
| 2331 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
| 2332 |
+
metrics:
|
| 2333 |
+
- type: cos_sim_pearson
|
| 2334 |
+
value: 82.96134704624787
|
| 2335 |
+
- type: cos_sim_spearman
|
| 2336 |
+
value: 84.44062976314666
|
| 2337 |
+
- type: euclidean_pearson
|
| 2338 |
+
value: 84.03642536310323
|
| 2339 |
+
- type: euclidean_spearman
|
| 2340 |
+
value: 84.4535014579785
|
| 2341 |
+
- type: manhattan_pearson
|
| 2342 |
+
value: 83.92874228901483
|
| 2343 |
+
- type: manhattan_spearman
|
| 2344 |
+
value: 84.33634314951631
|
| 2345 |
+
- task:
|
| 2346 |
+
type: STS
|
| 2347 |
+
dataset:
|
| 2348 |
+
type: mteb/sts17-crosslingual-sts
|
| 2349 |
+
name: MTEB STS17 (en-de)
|
| 2350 |
+
config: en-de
|
| 2351 |
+
split: test
|
| 2352 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
| 2353 |
+
metrics:
|
| 2354 |
+
- type: cos_sim_pearson
|
| 2355 |
+
value: 87.3154168064887
|
| 2356 |
+
- type: cos_sim_spearman
|
| 2357 |
+
value: 86.72393652571682
|
| 2358 |
+
- type: euclidean_pearson
|
| 2359 |
+
value: 86.04193246174164
|
| 2360 |
+
- type: euclidean_spearman
|
| 2361 |
+
value: 86.30482896608093
|
| 2362 |
+
- type: manhattan_pearson
|
| 2363 |
+
value: 85.95524084651859
|
| 2364 |
+
- type: manhattan_spearman
|
| 2365 |
+
value: 86.06031431994282
|
| 2366 |
+
- task:
|
| 2367 |
+
type: STS
|
| 2368 |
+
dataset:
|
| 2369 |
+
type: mteb/sts17-crosslingual-sts
|
| 2370 |
+
name: MTEB STS17 (en-en)
|
| 2371 |
+
config: en-en
|
| 2372 |
+
split: test
|
| 2373 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
| 2374 |
+
metrics:
|
| 2375 |
+
- type: cos_sim_pearson
|
| 2376 |
+
value: 89.91079682750804
|
| 2377 |
+
- type: cos_sim_spearman
|
| 2378 |
+
value: 89.30961836617064
|
| 2379 |
+
- type: euclidean_pearson
|
| 2380 |
+
value: 88.86249564158628
|
| 2381 |
+
- type: euclidean_spearman
|
| 2382 |
+
value: 89.04772899592396
|
| 2383 |
+
- type: manhattan_pearson
|
| 2384 |
+
value: 88.85579791315043
|
| 2385 |
+
- type: manhattan_spearman
|
| 2386 |
+
value: 88.94190462541333
|
| 2387 |
+
- task:
|
| 2388 |
+
type: STS
|
| 2389 |
+
dataset:
|
| 2390 |
+
type: mteb/sts22-crosslingual-sts
|
| 2391 |
+
name: MTEB STS22 (en)
|
| 2392 |
+
config: en
|
| 2393 |
+
split: test
|
| 2394 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
| 2395 |
+
metrics:
|
| 2396 |
+
- type: cos_sim_pearson
|
| 2397 |
+
value: 67.00558145551088
|
| 2398 |
+
- type: cos_sim_spearman
|
| 2399 |
+
value: 67.96601170393878
|
| 2400 |
+
- type: euclidean_pearson
|
| 2401 |
+
value: 67.87627043214336
|
| 2402 |
+
- type: euclidean_spearman
|
| 2403 |
+
value: 66.76402572303859
|
| 2404 |
+
- type: manhattan_pearson
|
| 2405 |
+
value: 67.88306560555452
|
| 2406 |
+
- type: manhattan_spearman
|
| 2407 |
+
value: 66.6273862035506
|
| 2408 |
+
- task:
|
| 2409 |
+
type: STS
|
| 2410 |
+
dataset:
|
| 2411 |
+
type: mteb/sts22-crosslingual-sts
|
| 2412 |
+
name: MTEB STS22 (de)
|
| 2413 |
+
config: de
|
| 2414 |
+
split: test
|
| 2415 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
| 2416 |
+
metrics:
|
| 2417 |
+
- type: cos_sim_pearson
|
| 2418 |
+
value: 50.83759332748726
|
| 2419 |
+
- type: cos_sim_spearman
|
| 2420 |
+
value: 59.066344562858006
|
| 2421 |
+
- type: euclidean_pearson
|
| 2422 |
+
value: 50.08955848154131
|
| 2423 |
+
- type: euclidean_spearman
|
| 2424 |
+
value: 58.36517305855221
|
| 2425 |
+
- type: manhattan_pearson
|
| 2426 |
+
value: 50.05257267223111
|
| 2427 |
+
- type: manhattan_spearman
|
| 2428 |
+
value: 58.37570252804986
|
| 2429 |
+
- task:
|
| 2430 |
+
type: STS
|
| 2431 |
+
dataset:
|
| 2432 |
+
type: mteb/sts22-crosslingual-sts
|
| 2433 |
+
name: MTEB STS22 (de-en)
|
| 2434 |
+
config: de-en
|
| 2435 |
+
split: test
|
| 2436 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
| 2437 |
+
metrics:
|
| 2438 |
+
- type: cos_sim_pearson
|
| 2439 |
+
value: 59.22749007956492
|
| 2440 |
+
- type: cos_sim_spearman
|
| 2441 |
+
value: 55.97282077657827
|
| 2442 |
+
- type: euclidean_pearson
|
| 2443 |
+
value: 62.10661533695752
|
| 2444 |
+
- type: euclidean_spearman
|
| 2445 |
+
value: 53.62780854854067
|
| 2446 |
+
- type: manhattan_pearson
|
| 2447 |
+
value: 62.37138085709719
|
| 2448 |
+
- type: manhattan_spearman
|
| 2449 |
+
value: 54.17556356828155
|
| 2450 |
+
- task:
|
| 2451 |
+
type: STS
|
| 2452 |
+
dataset:
|
| 2453 |
+
type: mteb/stsbenchmark-sts
|
| 2454 |
+
name: MTEB STSBenchmark
|
| 2455 |
+
config: default
|
| 2456 |
+
split: test
|
| 2457 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
| 2458 |
+
metrics:
|
| 2459 |
+
- type: cos_sim_pearson
|
| 2460 |
+
value: 87.91145397065878
|
| 2461 |
+
- type: cos_sim_spearman
|
| 2462 |
+
value: 88.13960018389005
|
| 2463 |
+
- type: euclidean_pearson
|
| 2464 |
+
value: 87.67618876224006
|
| 2465 |
+
- type: euclidean_spearman
|
| 2466 |
+
value: 87.99119480810556
|
| 2467 |
+
- type: manhattan_pearson
|
| 2468 |
+
value: 87.67920297334753
|
| 2469 |
+
- type: manhattan_spearman
|
| 2470 |
+
value: 87.99113250064492
|
| 2471 |
+
- task:
|
| 2472 |
+
type: Reranking
|
| 2473 |
+
dataset:
|
| 2474 |
+
type: mteb/scidocs-reranking
|
| 2475 |
+
name: MTEB SciDocsRR
|
| 2476 |
+
config: default
|
| 2477 |
+
split: test
|
| 2478 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
| 2479 |
+
metrics:
|
| 2480 |
+
- type: map
|
| 2481 |
+
value: 78.09133563707582
|
| 2482 |
+
- type: mrr
|
| 2483 |
+
value: 93.2415288052543
|
| 2484 |
+
- task:
|
| 2485 |
+
type: Retrieval
|
| 2486 |
+
dataset:
|
| 2487 |
+
type: scifact
|
| 2488 |
+
name: MTEB SciFact
|
| 2489 |
+
config: default
|
| 2490 |
+
split: test
|
| 2491 |
+
revision: None
|
| 2492 |
+
metrics:
|
| 2493 |
+
- type: map_at_1
|
| 2494 |
+
value: 47.760999999999996
|
| 2495 |
+
- type: map_at_10
|
| 2496 |
+
value: 56.424
|
| 2497 |
+
- type: map_at_100
|
| 2498 |
+
value: 57.24399999999999
|
| 2499 |
+
- type: map_at_1000
|
| 2500 |
+
value: 57.278
|
| 2501 |
+
- type: map_at_3
|
| 2502 |
+
value: 53.68000000000001
|
| 2503 |
+
- type: map_at_5
|
| 2504 |
+
value: 55.442
|
| 2505 |
+
- type: mrr_at_1
|
| 2506 |
+
value: 50.666999999999994
|
| 2507 |
+
- type: mrr_at_10
|
| 2508 |
+
value: 58.012
|
| 2509 |
+
- type: mrr_at_100
|
| 2510 |
+
value: 58.736
|
| 2511 |
+
- type: mrr_at_1000
|
| 2512 |
+
value: 58.769000000000005
|
| 2513 |
+
- type: mrr_at_3
|
| 2514 |
+
value: 56.056
|
| 2515 |
+
- type: mrr_at_5
|
| 2516 |
+
value: 57.321999999999996
|
| 2517 |
+
- type: ndcg_at_1
|
| 2518 |
+
value: 50.666999999999994
|
| 2519 |
+
- type: ndcg_at_10
|
| 2520 |
+
value: 60.67700000000001
|
| 2521 |
+
- type: ndcg_at_100
|
| 2522 |
+
value: 64.513
|
| 2523 |
+
- type: ndcg_at_1000
|
| 2524 |
+
value: 65.62400000000001
|
| 2525 |
+
- type: ndcg_at_3
|
| 2526 |
+
value: 56.186
|
| 2527 |
+
- type: ndcg_at_5
|
| 2528 |
+
value: 58.692
|
| 2529 |
+
- type: precision_at_1
|
| 2530 |
+
value: 50.666999999999994
|
| 2531 |
+
- type: precision_at_10
|
| 2532 |
+
value: 8.200000000000001
|
| 2533 |
+
- type: precision_at_100
|
| 2534 |
+
value: 1.023
|
| 2535 |
+
- type: precision_at_1000
|
| 2536 |
+
value: 0.11199999999999999
|
| 2537 |
+
- type: precision_at_3
|
| 2538 |
+
value: 21.889
|
| 2539 |
+
- type: precision_at_5
|
| 2540 |
+
value: 14.866999999999999
|
| 2541 |
+
- type: recall_at_1
|
| 2542 |
+
value: 47.760999999999996
|
| 2543 |
+
- type: recall_at_10
|
| 2544 |
+
value: 72.006
|
| 2545 |
+
- type: recall_at_100
|
| 2546 |
+
value: 89.767
|
| 2547 |
+
- type: recall_at_1000
|
| 2548 |
+
value: 98.833
|
| 2549 |
+
- type: recall_at_3
|
| 2550 |
+
value: 60.211000000000006
|
| 2551 |
+
- type: recall_at_5
|
| 2552 |
+
value: 66.3
|
| 2553 |
+
- task:
|
| 2554 |
+
type: PairClassification
|
| 2555 |
+
dataset:
|
| 2556 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
| 2557 |
+
name: MTEB SprintDuplicateQuestions
|
| 2558 |
+
config: default
|
| 2559 |
+
split: test
|
| 2560 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
| 2561 |
+
metrics:
|
| 2562 |
+
- type: cos_sim_accuracy
|
| 2563 |
+
value: 99.79009900990098
|
| 2564 |
+
- type: cos_sim_ap
|
| 2565 |
+
value: 94.86690691995835
|
| 2566 |
+
- type: cos_sim_f1
|
| 2567 |
+
value: 89.37875751503007
|
| 2568 |
+
- type: cos_sim_precision
|
| 2569 |
+
value: 89.5582329317269
|
| 2570 |
+
- type: cos_sim_recall
|
| 2571 |
+
value: 89.2
|
| 2572 |
+
- type: dot_accuracy
|
| 2573 |
+
value: 99.76336633663367
|
| 2574 |
+
- type: dot_ap
|
| 2575 |
+
value: 94.26453740761586
|
| 2576 |
+
- type: dot_f1
|
| 2577 |
+
value: 88.00783162016641
|
| 2578 |
+
- type: dot_precision
|
| 2579 |
+
value: 86.19367209971237
|
| 2580 |
+
- type: dot_recall
|
| 2581 |
+
value: 89.9
|
| 2582 |
+
- type: euclidean_accuracy
|
| 2583 |
+
value: 99.7940594059406
|
| 2584 |
+
- type: euclidean_ap
|
| 2585 |
+
value: 94.85459757524379
|
| 2586 |
+
- type: euclidean_f1
|
| 2587 |
+
value: 89.62779156327544
|
| 2588 |
+
- type: euclidean_precision
|
| 2589 |
+
value: 88.96551724137932
|
| 2590 |
+
- type: euclidean_recall
|
| 2591 |
+
value: 90.3
|
| 2592 |
+
- type: manhattan_accuracy
|
| 2593 |
+
value: 99.79009900990098
|
| 2594 |
+
- type: manhattan_ap
|
| 2595 |
+
value: 94.76971336654465
|
| 2596 |
+
- type: manhattan_f1
|
| 2597 |
+
value: 89.35323383084577
|
| 2598 |
+
- type: manhattan_precision
|
| 2599 |
+
value: 88.91089108910892
|
| 2600 |
+
- type: manhattan_recall
|
| 2601 |
+
value: 89.8
|
| 2602 |
+
- type: max_accuracy
|
| 2603 |
+
value: 99.7940594059406
|
| 2604 |
+
- type: max_ap
|
| 2605 |
+
value: 94.86690691995835
|
| 2606 |
+
- type: max_f1
|
| 2607 |
+
value: 89.62779156327544
|
| 2608 |
+
- task:
|
| 2609 |
+
type: Clustering
|
| 2610 |
+
dataset:
|
| 2611 |
+
type: mteb/stackexchange-clustering
|
| 2612 |
+
name: MTEB StackExchangeClustering
|
| 2613 |
+
config: default
|
| 2614 |
+
split: test
|
| 2615 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
| 2616 |
+
metrics:
|
| 2617 |
+
- type: v_measure
|
| 2618 |
+
value: 55.38197670064987
|
| 2619 |
+
- task:
|
| 2620 |
+
type: Clustering
|
| 2621 |
+
dataset:
|
| 2622 |
+
type: mteb/stackexchange-clustering-p2p
|
| 2623 |
+
name: MTEB StackExchangeClusteringP2P
|
| 2624 |
+
config: default
|
| 2625 |
+
split: test
|
| 2626 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
| 2627 |
+
metrics:
|
| 2628 |
+
- type: v_measure
|
| 2629 |
+
value: 33.08330158937971
|
| 2630 |
+
- task:
|
| 2631 |
+
type: Reranking
|
| 2632 |
+
dataset:
|
| 2633 |
+
type: mteb/stackoverflowdupquestions-reranking
|
| 2634 |
+
name: MTEB StackOverflowDupQuestions
|
| 2635 |
+
config: default
|
| 2636 |
+
split: test
|
| 2637 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
| 2638 |
+
metrics:
|
| 2639 |
+
- type: map
|
| 2640 |
+
value: 49.50367079063226
|
| 2641 |
+
- type: mrr
|
| 2642 |
+
value: 50.30444943128768
|
| 2643 |
+
- task:
|
| 2644 |
+
type: Summarization
|
| 2645 |
+
dataset:
|
| 2646 |
+
type: mteb/summeval
|
| 2647 |
+
name: MTEB SummEval
|
| 2648 |
+
config: default
|
| 2649 |
+
split: test
|
| 2650 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
| 2651 |
+
metrics:
|
| 2652 |
+
- type: cos_sim_pearson
|
| 2653 |
+
value: 30.37739520909561
|
| 2654 |
+
- type: cos_sim_spearman
|
| 2655 |
+
value: 31.548500943973913
|
| 2656 |
+
- type: dot_pearson
|
| 2657 |
+
value: 29.983610104303
|
| 2658 |
+
- type: dot_spearman
|
| 2659 |
+
value: 29.90185869098618
|
| 2660 |
+
- task:
|
| 2661 |
+
type: Retrieval
|
| 2662 |
+
dataset:
|
| 2663 |
+
type: trec-covid
|
| 2664 |
+
name: MTEB TRECCOVID
|
| 2665 |
+
config: default
|
| 2666 |
+
split: test
|
| 2667 |
+
revision: None
|
| 2668 |
+
metrics:
|
| 2669 |
+
- type: map_at_1
|
| 2670 |
+
value: 0.198
|
| 2671 |
+
- type: map_at_10
|
| 2672 |
+
value: 1.5810000000000002
|
| 2673 |
+
- type: map_at_100
|
| 2674 |
+
value: 9.064
|
| 2675 |
+
- type: map_at_1000
|
| 2676 |
+
value: 22.161
|
| 2677 |
+
- type: map_at_3
|
| 2678 |
+
value: 0.536
|
| 2679 |
+
- type: map_at_5
|
| 2680 |
+
value: 0.8370000000000001
|
| 2681 |
+
- type: mrr_at_1
|
| 2682 |
+
value: 80.0
|
| 2683 |
+
- type: mrr_at_10
|
| 2684 |
+
value: 86.75
|
| 2685 |
+
- type: mrr_at_100
|
| 2686 |
+
value: 86.799
|
| 2687 |
+
- type: mrr_at_1000
|
| 2688 |
+
value: 86.799
|
| 2689 |
+
- type: mrr_at_3
|
| 2690 |
+
value: 85.0
|
| 2691 |
+
- type: mrr_at_5
|
| 2692 |
+
value: 86.5
|
| 2693 |
+
- type: ndcg_at_1
|
| 2694 |
+
value: 73.0
|
| 2695 |
+
- type: ndcg_at_10
|
| 2696 |
+
value: 65.122
|
| 2697 |
+
- type: ndcg_at_100
|
| 2698 |
+
value: 51.853
|
| 2699 |
+
- type: ndcg_at_1000
|
| 2700 |
+
value: 47.275
|
| 2701 |
+
- type: ndcg_at_3
|
| 2702 |
+
value: 66.274
|
| 2703 |
+
- type: ndcg_at_5
|
| 2704 |
+
value: 64.826
|
| 2705 |
+
- type: precision_at_1
|
| 2706 |
+
value: 80.0
|
| 2707 |
+
- type: precision_at_10
|
| 2708 |
+
value: 70.19999999999999
|
| 2709 |
+
- type: precision_at_100
|
| 2710 |
+
value: 53.480000000000004
|
| 2711 |
+
- type: precision_at_1000
|
| 2712 |
+
value: 20.946
|
| 2713 |
+
- type: precision_at_3
|
| 2714 |
+
value: 71.333
|
| 2715 |
+
- type: precision_at_5
|
| 2716 |
+
value: 70.0
|
| 2717 |
+
- type: recall_at_1
|
| 2718 |
+
value: 0.198
|
| 2719 |
+
- type: recall_at_10
|
| 2720 |
+
value: 1.884
|
| 2721 |
+
- type: recall_at_100
|
| 2722 |
+
value: 12.57
|
| 2723 |
+
- type: recall_at_1000
|
| 2724 |
+
value: 44.208999999999996
|
| 2725 |
+
- type: recall_at_3
|
| 2726 |
+
value: 0.5890000000000001
|
| 2727 |
+
- type: recall_at_5
|
| 2728 |
+
value: 0.95
|
| 2729 |
+
- task:
|
| 2730 |
+
type: Clustering
|
| 2731 |
+
dataset:
|
| 2732 |
+
type: slvnwhrl/tenkgnad-clustering-p2p
|
| 2733 |
+
name: MTEB TenKGnadClusteringP2P
|
| 2734 |
+
config: default
|
| 2735 |
+
split: test
|
| 2736 |
+
revision: 5c59e41555244b7e45c9a6be2d720ab4bafae558
|
| 2737 |
+
metrics:
|
| 2738 |
+
- type: v_measure
|
| 2739 |
+
value: 42.84199261133083
|
| 2740 |
+
- task:
|
| 2741 |
+
type: Clustering
|
| 2742 |
+
dataset:
|
| 2743 |
+
type: slvnwhrl/tenkgnad-clustering-s2s
|
| 2744 |
+
name: MTEB TenKGnadClusteringS2S
|
| 2745 |
+
config: default
|
| 2746 |
+
split: test
|
| 2747 |
+
revision: 6cddbe003f12b9b140aec477b583ac4191f01786
|
| 2748 |
+
metrics:
|
| 2749 |
+
- type: v_measure
|
| 2750 |
+
value: 23.689557114798838
|
| 2751 |
+
- task:
|
| 2752 |
+
type: Retrieval
|
| 2753 |
+
dataset:
|
| 2754 |
+
type: webis-touche2020
|
| 2755 |
+
name: MTEB Touche2020
|
| 2756 |
+
config: default
|
| 2757 |
+
split: test
|
| 2758 |
+
revision: None
|
| 2759 |
+
metrics:
|
| 2760 |
+
- type: map_at_1
|
| 2761 |
+
value: 1.941
|
| 2762 |
+
- type: map_at_10
|
| 2763 |
+
value: 8.222
|
| 2764 |
+
- type: map_at_100
|
| 2765 |
+
value: 14.277999999999999
|
| 2766 |
+
- type: map_at_1000
|
| 2767 |
+
value: 15.790000000000001
|
| 2768 |
+
- type: map_at_3
|
| 2769 |
+
value: 4.4670000000000005
|
| 2770 |
+
- type: map_at_5
|
| 2771 |
+
value: 5.762
|
| 2772 |
+
- type: mrr_at_1
|
| 2773 |
+
value: 24.490000000000002
|
| 2774 |
+
- type: mrr_at_10
|
| 2775 |
+
value: 38.784
|
| 2776 |
+
- type: mrr_at_100
|
| 2777 |
+
value: 39.724
|
| 2778 |
+
- type: mrr_at_1000
|
| 2779 |
+
value: 39.724
|
| 2780 |
+
- type: mrr_at_3
|
| 2781 |
+
value: 33.333
|
| 2782 |
+
- type: mrr_at_5
|
| 2783 |
+
value: 37.415
|
| 2784 |
+
- type: ndcg_at_1
|
| 2785 |
+
value: 22.448999999999998
|
| 2786 |
+
- type: ndcg_at_10
|
| 2787 |
+
value: 21.026
|
| 2788 |
+
- type: ndcg_at_100
|
| 2789 |
+
value: 33.721000000000004
|
| 2790 |
+
- type: ndcg_at_1000
|
| 2791 |
+
value: 45.045
|
| 2792 |
+
- type: ndcg_at_3
|
| 2793 |
+
value: 20.053
|
| 2794 |
+
- type: ndcg_at_5
|
| 2795 |
+
value: 20.09
|
| 2796 |
+
- type: precision_at_1
|
| 2797 |
+
value: 24.490000000000002
|
| 2798 |
+
- type: precision_at_10
|
| 2799 |
+
value: 19.796
|
| 2800 |
+
- type: precision_at_100
|
| 2801 |
+
value: 7.469
|
| 2802 |
+
- type: precision_at_1000
|
| 2803 |
+
value: 1.48
|
| 2804 |
+
- type: precision_at_3
|
| 2805 |
+
value: 21.769
|
| 2806 |
+
- type: precision_at_5
|
| 2807 |
+
value: 21.224
|
| 2808 |
+
- type: recall_at_1
|
| 2809 |
+
value: 1.941
|
| 2810 |
+
- type: recall_at_10
|
| 2811 |
+
value: 14.915999999999999
|
| 2812 |
+
- type: recall_at_100
|
| 2813 |
+
value: 46.155
|
| 2814 |
+
- type: recall_at_1000
|
| 2815 |
+
value: 80.664
|
| 2816 |
+
- type: recall_at_3
|
| 2817 |
+
value: 5.629
|
| 2818 |
+
- type: recall_at_5
|
| 2819 |
+
value: 8.437
|
| 2820 |
+
- task:
|
| 2821 |
+
type: Classification
|
| 2822 |
+
dataset:
|
| 2823 |
+
type: mteb/toxic_conversations_50k
|
| 2824 |
+
name: MTEB ToxicConversationsClassification
|
| 2825 |
+
config: default
|
| 2826 |
+
split: test
|
| 2827 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
| 2828 |
+
metrics:
|
| 2829 |
+
- type: accuracy
|
| 2830 |
+
value: 69.64800000000001
|
| 2831 |
+
- type: ap
|
| 2832 |
+
value: 12.914826731261094
|
| 2833 |
+
- type: f1
|
| 2834 |
+
value: 53.05213503422915
|
| 2835 |
+
- task:
|
| 2836 |
+
type: Classification
|
| 2837 |
+
dataset:
|
| 2838 |
+
type: mteb/tweet_sentiment_extraction
|
| 2839 |
+
name: MTEB TweetSentimentExtractionClassification
|
| 2840 |
+
config: default
|
| 2841 |
+
split: test
|
| 2842 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
| 2843 |
+
metrics:
|
| 2844 |
+
- type: accuracy
|
| 2845 |
+
value: 60.427277872099594
|
| 2846 |
+
- type: f1
|
| 2847 |
+
value: 60.78292007556828
|
| 2848 |
+
- task:
|
| 2849 |
+
type: Clustering
|
| 2850 |
+
dataset:
|
| 2851 |
+
type: mteb/twentynewsgroups-clustering
|
| 2852 |
+
name: MTEB TwentyNewsgroupsClustering
|
| 2853 |
+
config: default
|
| 2854 |
+
split: test
|
| 2855 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
| 2856 |
+
metrics:
|
| 2857 |
+
- type: v_measure
|
| 2858 |
+
value: 40.48134168406559
|
| 2859 |
+
- task:
|
| 2860 |
+
type: PairClassification
|
| 2861 |
+
dataset:
|
| 2862 |
+
type: mteb/twittersemeval2015-pairclassification
|
| 2863 |
+
name: MTEB TwitterSemEval2015
|
| 2864 |
+
config: default
|
| 2865 |
+
split: test
|
| 2866 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
| 2867 |
+
metrics:
|
| 2868 |
+
- type: cos_sim_accuracy
|
| 2869 |
+
value: 84.79465935506944
|
| 2870 |
+
- type: cos_sim_ap
|
| 2871 |
+
value: 70.24589055290592
|
| 2872 |
+
- type: cos_sim_f1
|
| 2873 |
+
value: 65.0994575045208
|
| 2874 |
+
- type: cos_sim_precision
|
| 2875 |
+
value: 63.76518218623482
|
| 2876 |
+
- type: cos_sim_recall
|
| 2877 |
+
value: 66.49076517150397
|
| 2878 |
+
- type: dot_accuracy
|
| 2879 |
+
value: 84.63968528342374
|
| 2880 |
+
- type: dot_ap
|
| 2881 |
+
value: 69.84683095084355
|
| 2882 |
+
- type: dot_f1
|
| 2883 |
+
value: 64.50606169727523
|
| 2884 |
+
- type: dot_precision
|
| 2885 |
+
value: 59.1719885487778
|
| 2886 |
+
- type: dot_recall
|
| 2887 |
+
value: 70.89709762532982
|
| 2888 |
+
- type: euclidean_accuracy
|
| 2889 |
+
value: 84.76485664898374
|
| 2890 |
+
- type: euclidean_ap
|
| 2891 |
+
value: 70.20556438685551
|
| 2892 |
+
- type: euclidean_f1
|
| 2893 |
+
value: 65.06796614516543
|
| 2894 |
+
- type: euclidean_precision
|
| 2895 |
+
value: 63.29840319361277
|
| 2896 |
+
- type: euclidean_recall
|
| 2897 |
+
value: 66.93931398416886
|
| 2898 |
+
- type: manhattan_accuracy
|
| 2899 |
+
value: 84.72313286046374
|
| 2900 |
+
- type: manhattan_ap
|
| 2901 |
+
value: 70.17151475534308
|
| 2902 |
+
- type: manhattan_f1
|
| 2903 |
+
value: 65.31379180759113
|
| 2904 |
+
- type: manhattan_precision
|
| 2905 |
+
value: 62.17505366086334
|
| 2906 |
+
- type: manhattan_recall
|
| 2907 |
+
value: 68.7862796833773
|
| 2908 |
+
- type: max_accuracy
|
| 2909 |
+
value: 84.79465935506944
|
| 2910 |
+
- type: max_ap
|
| 2911 |
+
value: 70.24589055290592
|
| 2912 |
+
- type: max_f1
|
| 2913 |
+
value: 65.31379180759113
|
| 2914 |
+
- task:
|
| 2915 |
+
type: PairClassification
|
| 2916 |
+
dataset:
|
| 2917 |
+
type: mteb/twitterurlcorpus-pairclassification
|
| 2918 |
+
name: MTEB TwitterURLCorpus
|
| 2919 |
+
config: default
|
| 2920 |
+
split: test
|
| 2921 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
| 2922 |
+
metrics:
|
| 2923 |
+
- type: cos_sim_accuracy
|
| 2924 |
+
value: 88.95874568246207
|
| 2925 |
+
- type: cos_sim_ap
|
| 2926 |
+
value: 85.82517548264127
|
| 2927 |
+
- type: cos_sim_f1
|
| 2928 |
+
value: 78.22288041466125
|
| 2929 |
+
- type: cos_sim_precision
|
| 2930 |
+
value: 75.33875338753387
|
| 2931 |
+
- type: cos_sim_recall
|
| 2932 |
+
value: 81.33661841700031
|
| 2933 |
+
- type: dot_accuracy
|
| 2934 |
+
value: 88.836496293709
|
| 2935 |
+
- type: dot_ap
|
| 2936 |
+
value: 85.53430720252186
|
| 2937 |
+
- type: dot_f1
|
| 2938 |
+
value: 78.10616085869725
|
| 2939 |
+
- type: dot_precision
|
| 2940 |
+
value: 74.73269555430501
|
| 2941 |
+
- type: dot_recall
|
| 2942 |
+
value: 81.79858330766862
|
| 2943 |
+
- type: euclidean_accuracy
|
| 2944 |
+
value: 88.92769821865176
|
| 2945 |
+
- type: euclidean_ap
|
| 2946 |
+
value: 85.65904346964223
|
| 2947 |
+
- type: euclidean_f1
|
| 2948 |
+
value: 77.98774074208407
|
| 2949 |
+
- type: euclidean_precision
|
| 2950 |
+
value: 73.72282795035315
|
| 2951 |
+
- type: euclidean_recall
|
| 2952 |
+
value: 82.77640899291654
|
| 2953 |
+
- type: manhattan_accuracy
|
| 2954 |
+
value: 88.86366282454303
|
| 2955 |
+
- type: manhattan_ap
|
| 2956 |
+
value: 85.61599642231819
|
| 2957 |
+
- type: manhattan_f1
|
| 2958 |
+
value: 78.01480509061737
|
| 2959 |
+
- type: manhattan_precision
|
| 2960 |
+
value: 74.10460685833044
|
| 2961 |
+
- type: manhattan_recall
|
| 2962 |
+
value: 82.36064059131506
|
| 2963 |
+
- type: max_accuracy
|
| 2964 |
+
value: 88.95874568246207
|
| 2965 |
+
- type: max_ap
|
| 2966 |
+
value: 85.82517548264127
|
| 2967 |
+
- type: max_f1
|
| 2968 |
+
value: 78.22288041466125
|
| 2969 |
+
- task:
|
| 2970 |
+
type: Retrieval
|
| 2971 |
+
dataset:
|
| 2972 |
+
type: None
|
| 2973 |
+
name: MTEB WikiCLIR
|
| 2974 |
+
config: default
|
| 2975 |
+
split: test
|
| 2976 |
+
revision: None
|
| 2977 |
+
metrics:
|
| 2978 |
+
- type: map_at_1
|
| 2979 |
+
value: 3.9539999999999997
|
| 2980 |
+
- type: map_at_10
|
| 2981 |
+
value: 7.407
|
| 2982 |
+
- type: map_at_100
|
| 2983 |
+
value: 8.677999999999999
|
| 2984 |
+
- type: map_at_1000
|
| 2985 |
+
value: 9.077
|
| 2986 |
+
- type: map_at_3
|
| 2987 |
+
value: 5.987
|
| 2988 |
+
- type: map_at_5
|
| 2989 |
+
value: 6.6979999999999995
|
| 2990 |
+
- type: mrr_at_1
|
| 2991 |
+
value: 35.65
|
| 2992 |
+
- type: mrr_at_10
|
| 2993 |
+
value: 45.097
|
| 2994 |
+
- type: mrr_at_100
|
| 2995 |
+
value: 45.83
|
| 2996 |
+
- type: mrr_at_1000
|
| 2997 |
+
value: 45.871
|
| 2998 |
+
- type: mrr_at_3
|
| 2999 |
+
value: 42.63
|
| 3000 |
+
- type: mrr_at_5
|
| 3001 |
+
value: 44.104
|
| 3002 |
+
- type: ndcg_at_1
|
| 3003 |
+
value: 29.215000000000003
|
| 3004 |
+
- type: ndcg_at_10
|
| 3005 |
+
value: 22.694
|
| 3006 |
+
- type: ndcg_at_100
|
| 3007 |
+
value: 22.242
|
| 3008 |
+
- type: ndcg_at_1000
|
| 3009 |
+
value: 27.069
|
| 3010 |
+
- type: ndcg_at_3
|
| 3011 |
+
value: 27.641
|
| 3012 |
+
- type: ndcg_at_5
|
| 3013 |
+
value: 25.503999999999998
|
| 3014 |
+
- type: precision_at_1
|
| 3015 |
+
value: 35.65
|
| 3016 |
+
- type: precision_at_10
|
| 3017 |
+
value: 12.795000000000002
|
| 3018 |
+
- type: precision_at_100
|
| 3019 |
+
value: 3.354
|
| 3020 |
+
- type: precision_at_1000
|
| 3021 |
+
value: 0.743
|
| 3022 |
+
- type: precision_at_3
|
| 3023 |
+
value: 23.403
|
| 3024 |
+
- type: precision_at_5
|
| 3025 |
+
value: 18.474
|
| 3026 |
+
- type: recall_at_1
|
| 3027 |
+
value: 3.9539999999999997
|
| 3028 |
+
- type: recall_at_10
|
| 3029 |
+
value: 11.301
|
| 3030 |
+
- type: recall_at_100
|
| 3031 |
+
value: 22.919999999999998
|
| 3032 |
+
- type: recall_at_1000
|
| 3033 |
+
value: 40.146
|
| 3034 |
+
- type: recall_at_3
|
| 3035 |
+
value: 7.146
|
| 3036 |
+
- type: recall_at_5
|
| 3037 |
+
value: 8.844000000000001
|
| 3038 |
+
- task:
|
| 3039 |
+
type: Retrieval
|
| 3040 |
+
dataset:
|
| 3041 |
+
type: jinaai/xmarket_de
|
| 3042 |
+
name: MTEB XMarket
|
| 3043 |
+
config: default
|
| 3044 |
+
split: test
|
| 3045 |
+
revision: 2336818db4c06570fcdf263e1bcb9993b786f67a
|
| 3046 |
+
metrics:
|
| 3047 |
+
- type: map_at_1
|
| 3048 |
+
value: 4.872
|
| 3049 |
+
- type: map_at_10
|
| 3050 |
+
value: 10.658
|
| 3051 |
+
- type: map_at_100
|
| 3052 |
+
value: 13.422999999999998
|
| 3053 |
+
- type: map_at_1000
|
| 3054 |
+
value: 14.245
|
| 3055 |
+
- type: map_at_3
|
| 3056 |
+
value: 7.857
|
| 3057 |
+
- type: map_at_5
|
| 3058 |
+
value: 9.142999999999999
|
| 3059 |
+
- type: mrr_at_1
|
| 3060 |
+
value: 16.744999999999997
|
| 3061 |
+
- type: mrr_at_10
|
| 3062 |
+
value: 24.416
|
| 3063 |
+
- type: mrr_at_100
|
| 3064 |
+
value: 25.432
|
| 3065 |
+
- type: mrr_at_1000
|
| 3066 |
+
value: 25.502999999999997
|
| 3067 |
+
- type: mrr_at_3
|
| 3068 |
+
value: 22.096
|
| 3069 |
+
- type: mrr_at_5
|
| 3070 |
+
value: 23.421
|
| 3071 |
+
- type: ndcg_at_1
|
| 3072 |
+
value: 16.695999999999998
|
| 3073 |
+
- type: ndcg_at_10
|
| 3074 |
+
value: 18.66
|
| 3075 |
+
- type: ndcg_at_100
|
| 3076 |
+
value: 24.314
|
| 3077 |
+
- type: ndcg_at_1000
|
| 3078 |
+
value: 29.846
|
| 3079 |
+
- type: ndcg_at_3
|
| 3080 |
+
value: 17.041999999999998
|
| 3081 |
+
- type: ndcg_at_5
|
| 3082 |
+
value: 17.585
|
| 3083 |
+
- type: precision_at_1
|
| 3084 |
+
value: 16.695999999999998
|
| 3085 |
+
- type: precision_at_10
|
| 3086 |
+
value: 10.374
|
| 3087 |
+
- type: precision_at_100
|
| 3088 |
+
value: 3.988
|
| 3089 |
+
- type: precision_at_1000
|
| 3090 |
+
value: 1.1860000000000002
|
| 3091 |
+
- type: precision_at_3
|
| 3092 |
+
value: 14.21
|
| 3093 |
+
- type: precision_at_5
|
| 3094 |
+
value: 12.623000000000001
|
| 3095 |
+
- type: recall_at_1
|
| 3096 |
+
value: 4.872
|
| 3097 |
+
- type: recall_at_10
|
| 3098 |
+
value: 18.624
|
| 3099 |
+
- type: recall_at_100
|
| 3100 |
+
value: 40.988
|
| 3101 |
+
- type: recall_at_1000
|
| 3102 |
+
value: 65.33
|
| 3103 |
+
- type: recall_at_3
|
| 3104 |
+
value: 10.162
|
| 3105 |
+
- type: recall_at_5
|
| 3106 |
+
value: 13.517999999999999
|
| 3107 |
+
---
|
| 3108 |
+
<!-- TODO: add evaluation results here -->
|
| 3109 |
+
<br><br>
|
| 3110 |
+
|
| 3111 |
+
<p align="center">
|
| 3112 |
+
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Jina AI logo: Jina AI is your Portal to Multimodal AI" width="150px">
|
| 3113 |
+
</p>
|
| 3114 |
+
|
| 3115 |
+
|
| 3116 |
+
<p align="center">
|
| 3117 |
+
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
|
| 3118 |
+
</p>
|
| 3119 |
+
|
| 3120 |
+
## Quick Start
|
| 3121 |
+
|
| 3122 |
+
The easiest way to starting using `jina-embeddings-v2-base-de` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/).
|
| 3123 |
+
|
| 3124 |
+
## Intended Usage & Model Info
|
| 3125 |
+
|
| 3126 |
+
`jina-embeddings-v2-base-de` is a German/English bilingual text **embedding model** supporting **8192 sequence length**.
|
| 3127 |
+
It is based on a BERT architecture (JinaBERT) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length.
|
| 3128 |
+
We have designed it for high performance in mono-lingual & cross-lingual applications and trained it specifically to support mixed German-English input without bias.
|
| 3129 |
+
Additionally, we provide the following embedding models:
|
| 3130 |
+
|
| 3131 |
+
`jina-embeddings-v2-base-de` ist ein zweisprachiges **Text Embedding Modell** für Deutsch und Englisch,
|
| 3132 |
+
welches Texteingaben mit einer Länge von bis zu **8192 Token unterstützt**.
|
| 3133 |
+
Es basiert auf der adaptierten Bert-Modell-Architektur JinaBERT,
|
| 3134 |
+
welche mithilfe einer symmetrische Variante von [ALiBi](https://arxiv.org/abs/2108.12409) längere Eingabetexte erlaubt.
|
| 3135 |
+
Wir haben, das Model für hohe Performance in einsprachigen und cross-lingual Anwendungen entwickelt und speziell darauf trainiert,
|
| 3136 |
+
gemischte deutsch-englische Eingaben ohne einen Bias zu kodieren.
|
| 3137 |
+
Des Weiteren stellen wir folgende Embedding-Modelle bereit:
|
| 3138 |
+
|
| 3139 |
+
- [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters.
|
| 3140 |
+
- [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters.
|
| 3141 |
+
- [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): 161 million parameters Chinese-English Bilingual embeddings.
|
| 3142 |
+
- [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): 161 million parameters German-English Bilingual embeddings **(you are here)**.
|
| 3143 |
+
- [`jina-embeddings-v2-base-es`](): Spanish-English Bilingual embeddings (soon).
|
| 3144 |
+
|
| 3145 |
+
## Data & Parameters
|
| 3146 |
+
|
| 3147 |
+
We will publish a report with technical details about the training of the bilingual models soon.
|
| 3148 |
+
The training of the English model is described in this [technical report](https://arxiv.org/abs/2310.19923).
|
| 3149 |
+
|
| 3150 |
+
## Usage
|
| 3151 |
+
|
| 3152 |
+
**<details><summary>Please apply mean pooling when integrating the model.</summary>**
|
| 3153 |
+
<p>
|
| 3154 |
+
|
| 3155 |
+
### Why mean pooling?
|
| 3156 |
+
|
| 3157 |
+
`mean poooling` takes all token embeddings from model output and averaging them at sentence/paragraph level.
|
| 3158 |
+
It has been proved to be the most effective way to produce high-quality sentence embeddings.
|
| 3159 |
+
We offer an `encode` function to deal with this.
|
| 3160 |
+
|
| 3161 |
+
However, if you would like to do it without using the default `encode` function:
|
| 3162 |
+
|
| 3163 |
+
```python
|
| 3164 |
+
import torch
|
| 3165 |
+
import torch.nn.functional as F
|
| 3166 |
+
from transformers import AutoTokenizer, AutoModel
|
| 3167 |
+
|
| 3168 |
+
def mean_pooling(model_output, attention_mask):
|
| 3169 |
+
token_embeddings = model_output[0]
|
| 3170 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 3171 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 3172 |
+
|
| 3173 |
+
sentences = ['How is the weather today?', 'What is the current weather like today?']
|
| 3174 |
+
|
| 3175 |
+
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-de')
|
| 3176 |
+
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True)
|
| 3177 |
+
|
| 3178 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 3179 |
+
|
| 3180 |
+
with torch.no_grad():
|
| 3181 |
+
model_output = model(**encoded_input)
|
| 3182 |
+
|
| 3183 |
+
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 3184 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 3185 |
+
```
|
| 3186 |
+
|
| 3187 |
+
</p>
|
| 3188 |
+
</details>
|
| 3189 |
+
|
| 3190 |
+
You can use Jina Embedding models directly from transformers package.
|
| 3191 |
+
|
| 3192 |
+
First, you need to make sure that you are logged into huggingface. You can either use the huggingface-cli tool (after installing the `transformers` package) and pass your [hugginface access token](https://huggingface.co/docs/hub/security-tokens):
|
| 3193 |
+
```bash
|
| 3194 |
+
huggingface-cli login
|
| 3195 |
+
```
|
| 3196 |
+
Alternatively, you can provide the access token as an environment variable in the shell:
|
| 3197 |
+
```bash
|
| 3198 |
+
export HF_TOKEN="<your token here>"
|
| 3199 |
+
```
|
| 3200 |
+
or in Python:
|
| 3201 |
+
```python
|
| 3202 |
+
import os
|
| 3203 |
+
|
| 3204 |
+
os.environ['HF_TOKEN'] = "<your token here>"
|
| 3205 |
+
```
|
| 3206 |
+
|
| 3207 |
+
Then, you can use load and use the model via the `AutoModel` class:
|
| 3208 |
+
```python
|
| 3209 |
+
!pip install transformers
|
| 3210 |
+
from transformers import AutoModel
|
| 3211 |
+
from numpy.linalg import norm
|
| 3212 |
+
|
| 3213 |
+
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
| 3214 |
+
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True) # trust_remote_code is needed to use the encode method
|
| 3215 |
+
embeddings = model.encode(['How is the weather today?', 'Wie ist das Wetter heute?'])
|
| 3216 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
| 3217 |
+
```
|
| 3218 |
+
|
| 3219 |
+
If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function:
|
| 3220 |
+
|
| 3221 |
+
```python
|
| 3222 |
+
embeddings = model.encode(
|
| 3223 |
+
['Very long ... document'],
|
| 3224 |
+
max_length=2048
|
| 3225 |
+
)
|
| 3226 |
+
```
|
| 3227 |
+
|
| 3228 |
+
Using the its latest release (v2.3.0) sentence-transformers also supports Jina embeddings (Please make sure that you are logged into huggingface as well):
|
| 3229 |
+
|
| 3230 |
+
```python
|
| 3231 |
+
!pip install -U sentence-transformers
|
| 3232 |
+
from sentence_transformers import SentenceTransformer
|
| 3233 |
+
from sentence_transformers.util import cos_sim
|
| 3234 |
+
|
| 3235 |
+
model = SentenceTransformer(
|
| 3236 |
+
"jinaai/jina-embeddings-v2-base-de", # switch to en/zh for English or Chinese
|
| 3237 |
+
trust_remote_code=True
|
| 3238 |
+
)
|
| 3239 |
+
|
| 3240 |
+
# control your input sequence length up to 8192
|
| 3241 |
+
model.max_seq_length = 1024
|
| 3242 |
+
|
| 3243 |
+
embeddings = model.encode([
|
| 3244 |
+
'How is the weather today?',
|
| 3245 |
+
'Wie ist das Wetter heute?'
|
| 3246 |
+
])
|
| 3247 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
| 3248 |
+
```
|
| 3249 |
+
|
| 3250 |
+
## Alternatives to Using Transformers Package
|
| 3251 |
+
|
| 3252 |
+
1. _Managed SaaS_: Get started with a free key on Jina AI's [Embedding API](https://jina.ai/embeddings/).
|
| 3253 |
+
2. _Private and high-performance deployment_: Get started by picking from our suite of models and deploy them on [AWS Sagemaker](https://aws.amazon.com/marketplace/seller-profile?id=seller-stch2ludm6vgy).
|
| 3254 |
+
|
| 3255 |
+
## Benchmark Results
|
| 3256 |
+
|
| 3257 |
+
We evaluated our Bilingual model on all German and English evaluation tasks availble on the [MTEB benchmark](https://huggingface.co/blog/mteb). In addition, we evaluated the models agains a couple of other German, English, and multilingual models on additional German evaluation tasks:
|
| 3258 |
+
|
| 3259 |
+
<img src="de_evaluation_results.png" width="780px">
|
| 3260 |
+
|
| 3261 |
+
## Use Jina Embeddings for RAG
|
| 3262 |
+
|
| 3263 |
+
According to the latest blog post from [LLamaIndex](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83),
|
| 3264 |
+
|
| 3265 |
+
> In summary, to achieve the peak performance in both hit rate and MRR, the combination of OpenAI or JinaAI-Base embeddings with the CohereRerank/bge-reranker-large reranker stands out.
|
| 3266 |
+
|
| 3267 |
+
<img src="https://miro.medium.com/v2/resize:fit:4800/format:webp/1*ZP2RVejCZovF3FDCg-Bx3A.png" width="780px">
|
| 3268 |
+
|
| 3269 |
+
## Trouble Shooting
|
| 3270 |
+
|
| 3271 |
+
**Loading of Model Code failed**
|
| 3272 |
+
|
| 3273 |
+
If you forgot to pass the `trust_remote_code=True` flag when calling `AutoModel.from_pretrained` or initializing the model via the `SentenceTransformer` class, you will receive an error that the model weights could not be initialized.
|
| 3274 |
+
This is caused by tranformers falling back to creating a default BERT model, instead of a jina-embedding model:
|
| 3275 |
+
|
| 3276 |
+
```bash
|
| 3277 |
+
Some weights of the model checkpoint at jinaai/jina-embeddings-v2-base-en were not used when initializing BertModel: ['encoder.layer.2.mlp.layernorm.weight', 'encoder.layer.3.mlp.layernorm.weight', 'encoder.layer.10.mlp.wo.bias', 'encoder.layer.5.mlp.wo.bias', 'encoder.layer.2.mlp.layernorm.bias', 'encoder.layer.1.mlp.gated_layers.weight', 'encoder.layer.5.mlp.gated_layers.weight', 'encoder.layer.8.mlp.layernorm.bias', ...
|
| 3278 |
+
```
|
| 3279 |
+
|
| 3280 |
+
|
| 3281 |
+
**User is not logged into Huggingface**
|
| 3282 |
+
|
| 3283 |
+
The model is only availabe under [gated access](https://huggingface.co/docs/hub/models-gated).
|
| 3284 |
+
This means you need to be logged into huggingface load load it.
|
| 3285 |
+
If you receive the following error, you need to provide an access token, either by using the huggingface-cli or providing the token via an environment variable as described above:
|
| 3286 |
+
```bash
|
| 3287 |
+
OSError: jinaai/jina-embeddings-v2-base-en is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models'
|
| 3288 |
+
If this is a private repository, make sure to pass a token having permission to this repo with `use_auth_token` or log in with `huggingface-cli login` and pass `use_auth_token=True`.
|
| 3289 |
+
```
|
| 3290 |
+
|
| 3291 |
+
## Contact
|
| 3292 |
+
|
| 3293 |
+
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
|
| 3294 |
+
|
| 3295 |
+
## Citation
|
| 3296 |
+
|
| 3297 |
+
If you find Jina Embeddings useful in your research, please cite the following paper:
|
| 3298 |
+
|
| 3299 |
+
```
|
| 3300 |
+
@misc{günther2023jina,
|
| 3301 |
+
title={Jina Embeddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents},
|
| 3302 |
+
author={Michael Günther and Jackmin Ong and Isabelle Mohr and Alaeddine Abdessalem and Tanguy Abel and Mohammad Kalim Akram and Susana Guzman and Georgios Mastrapas and Saba Sturua and Bo Wang and Maximilian Werk and Nan Wang and Han Xiao},
|
| 3303 |
+
year={2023},
|
| 3304 |
+
eprint={2310.19923},
|
| 3305 |
+
archivePrefix={arXiv},
|
| 3306 |
+
primaryClass={cs.CL}
|
| 3307 |
+
}
|
| 3308 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "jinaai/jina-bert-implementation",
|
| 3 |
+
"model_max_length": 8192,
|
| 4 |
+
"architectures": [
|
| 5 |
+
"JinaBertForMaskedLM"
|
| 6 |
+
],
|
| 7 |
+
"attention_probs_dropout_prob": 0.0,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "jinaai/jina-bert-implementation--configuration_bert.JinaBertConfig",
|
| 10 |
+
"AutoModelForMaskedLM": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForMaskedLM",
|
| 11 |
+
"AutoModel": "jinaai/jina-bert-implementation--modeling_bert.JinaBertModel",
|
| 12 |
+
"AutoModelForSequenceClassification": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForSequenceClassification"
|
| 13 |
+
},
|
| 14 |
+
"classifier_dropout": null,
|
| 15 |
+
"emb_pooler": "mean",
|
| 16 |
+
"feed_forward_type": "geglu",
|
| 17 |
+
"gradient_checkpointing": false,
|
| 18 |
+
"hidden_act": "gelu",
|
| 19 |
+
"hidden_dropout_prob": 0.1,
|
| 20 |
+
"hidden_size": 768,
|
| 21 |
+
"initializer_range": 0.02,
|
| 22 |
+
"intermediate_size": 3072,
|
| 23 |
+
"layer_norm_eps": 1e-12,
|
| 24 |
+
"max_position_embeddings": 8192,
|
| 25 |
+
"model_type": "bert",
|
| 26 |
+
"num_attention_heads": 12,
|
| 27 |
+
"num_hidden_layers": 12,
|
| 28 |
+
"pad_token_id": 0,
|
| 29 |
+
"position_embedding_type": "alibi",
|
| 30 |
+
"torch_dtype": "float16",
|
| 31 |
+
"transformers_version": "4.31.0",
|
| 32 |
+
"type_vocab_size": 2,
|
| 33 |
+
"use_cache": true,
|
| 34 |
+
"vocab_size": 61056
|
| 35 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "2.2.2",
|
| 4 |
+
"transformers": "4.31.0",
|
| 5 |
+
"pytorch": "2.0.1"
|
| 6 |
+
}
|
| 7 |
+
}
|
de_evaluation_results.png
ADDED
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
onnx/model.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:51654b7441fbfcfef6598b01cbd1ea925ca0f0cad81202fcd36fee325783f1b0
|
| 3 |
+
size 641212851
|
onnx/model_quantized.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b19a38d186594d9784e6a2c8954035a6928b5da1df402e7942d25021cf488b6b
|
| 3 |
+
size 161565240
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b7ed0e5f7aa0fbaf70db652dd783b4b8d9da415f6e6e405c91e069d364ad1eed
|
| 3 |
+
size 321664570
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 8192,
|
| 3 |
+
"do_lower_case": false,
|
| 4 |
+
"model_args": {"trust_remote_code": true}
|
| 5 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"cls_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"mask_token": {
|
| 6 |
+
"content": "<mask>",
|
| 7 |
+
"lstrip": true,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"pad_token": "<pad>",
|
| 13 |
+
"sep_token": "</s>",
|
| 14 |
+
"unk_token": "<unk>"
|
| 15 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "<s>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": "<pad>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": true,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": true,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"content": "<unk>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": true,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"4": {
|
| 37 |
+
"content": "<mask>",
|
| 38 |
+
"lstrip": true,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
}
|
| 44 |
+
},
|
| 45 |
+
"bos_token": "<s>",
|
| 46 |
+
"clean_up_tokenization_spaces": true,
|
| 47 |
+
"cls_token": "<s>",
|
| 48 |
+
"eos_token": "</s>",
|
| 49 |
+
"errors": "replace",
|
| 50 |
+
"mask_token": "<mask>",
|
| 51 |
+
"model_max_length": 512,
|
| 52 |
+
"pad_token": "<pad>",
|
| 53 |
+
"sep_token": "</s>",
|
| 54 |
+
"tokenizer_class": "RobertaTokenizer",
|
| 55 |
+
"trim_offsets": true,
|
| 56 |
+
"unk_token": "<unk>"
|
| 57 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|