|
import pandas as pd
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.tree import DecisionTreeClassifier
|
|
from sklearn.metrics import accuracy_score, classification_report
|
|
from sklearn.ensemble import RandomForestClassifier
|
|
import model_building.model_io as model_io
|
|
|
|
model = RandomForestClassifier(n_estimators=100, random_state=42)
|
|
|
|
bank_data = pd.read_csv('cleaned_bank_marketing.csv')
|
|
|
|
X = bank_data.drop('deposit', axis=1)
|
|
y = bank_data['deposit']
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
|
|
|
|
|
model.fit(X_train, y_train)
|
|
|
|
|
|
y_pred = model.predict(X_test)
|
|
|
|
print("Accuracy:", accuracy_score(y_test, y_pred))
|
|
print("Classification Report:")
|
|
print(classification_report(y_test, y_pred))
|
|
|
|
|
|
model_io.save_model(model, 'random_forest_model.joblib')
|
|
|
|
|
|
loaded_model = model_io.load_model('random_forest_model.joblib')
|
|
|
|
|
|
loaded_y_pred = loaded_model.predict(X_test)
|
|
|
|
print("Loaded Model Accuracy:", accuracy_score(y_test, loaded_y_pred))
|
|
print("Loaded Model Classification Report:")
|
|
print(classification_report(y_test, loaded_y_pred)) |