--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE. language: - en pipeline_tag: text-to-image tags: - Stable Diffusion - image-generation - Flux - diffusers --- ![Controlnet collections for Flux](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/light/flux-controlnet-collections.png?raw=true) [](https://discord.gg/FHY2guThfy) This repository provides a collection of ControlNet checkpoints for [FLUX.1-dev model](https://huggingface.co/black-forest-labs/FLUX.1-dev) by Black Forest Labs ![Example Picture 1](./assets/depth_v2_res1.png?raw=true) [See our github](https://github.com/XLabs-AI/x-flux-comfyui) for comfy ui workflows. ![Example Picture 1](https://github.com/XLabs-AI/x-flux-comfyui/blob/main/assets/image1.png?raw=true) [See our github](https://github.com/XLabs-AI/x-flux) for train script, train configs and demo script for inference. # Models Our collection supports 3 models: - Canny - HED - Depth (Midas) Each ControlNet is trained on 1024x1024 resolution and works for 1024x1024 resolution. We release **v2 versions** - better and realistic versions, which can be used directly in ComfyUI! Please, see our [ComfyUI custom nodes installation guide](https://github.com/XLabs-AI/x-flux-comfyui) # Examples See examples of our models results below. Also, some generation results with input images are provided in "Files and versions" # Inference To try our models, you have 2 options: 1. Use main.py from our [official repo](https://github.com/XLabs-AI/x-flux) 2. Use our custom nodes for ComfyUI and test it with provided workflows (check out folder /workflows) See examples how to launch our models: ## Canny ControlNet (version 2) 1. Clone our [x-flux-comfyui](https://github.com/XLabs-AI/x-flux-comfyui) custom nodes 2. Launch ComfyUI 3. Try our canny_workflow.json ![Example Picture 1](./assets/canny_v2_res1.png?raw=true) ![Example Picture 1](./assets/canny_v2_res2.png?raw=true) ![Example Picture 1](./assets/canny_v2_res3.png?raw=true) ## Canny ControlNet (version 1) 1. Clone [our repo](https://github.com/XLabs-AI/x-flux), install requirements 2. Launch main.py in command line with parameters ```bash python3 main.py \ --prompt "a viking man with white hair looking, cinematic, MM full HD" \ --image input_image_canny.jpg \ --control_type canny \ --repo_id XLabs-AI/flux-controlnet-collections --name flux-canny-controlnet.safetensors --device cuda --use_controlnet \ --model_type flux-dev --width 768 --height 768 \ --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4 ``` ![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/canny_example_1.png?raw=true) ## Depth ControlNet (version 2) 1. Clone our [x-flux-comfyui](https://github.com/XLabs-AI/x-flux-comfyui) custom nodes 2. Launch ComfyUI 3. Try our depth_workflow.json ![Example Picture 1](./assets/depth_v2_res1.png?raw=true) ![Example Picture 1](./assets/depth_v2_res2.png?raw=true) ## Depth ControlNet (version 1) 1. Clone [our repo](https://github.com/XLabs-AI/x-flux), install requirements 2. Launch main.py in command line with parameters ```bash python3 main.py \ --prompt "Photo of the bold man with beard and laptop, full hd, cinematic photo" \ --image input_image_depth1.jpg \ --control_type depth \ --repo_id XLabs-AI/flux-controlnet-collections --name flux-depth-controlnet.safetensors --device cuda --use_controlnet \ --model_type flux-dev --width 1024 --height 1024 \ --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4 ``` ![Example Picture 2](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_example_1.png?raw=true) ```bash python3 main.py \ --prompt "photo of handsome fluffy black dog standing on a forest path, full hd, cinematic photo" \ --image input_image_depth2.jpg \ --control_type depth \ --repo_id XLabs-AI/flux-controlnet-collections --name flux-depth-controlnet.safetensors --device cuda --use_controlnet \ --model_type flux-dev --width 1024 --height 1024 \ --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4 ``` ![Example Picture 2](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_example_2.png?raw=true) ```bash python3 main.py \ --prompt "Photo of japanese village with houses and sakura, full hd, cinematic photo" \ --image input_image_depth3.webp \ --control_type depth \ --repo_id XLabs-AI/flux-controlnet-collections --name flux-depth-controlnet.safetensors --device cuda --use_controlnet \ --model_type flux-dev --width 1024 --height 1024 \ --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4 ``` ![Example Picture 2](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_example_3.png?raw=true) ## HED ControlNet (version 1) ```bash python3 main.py \ --prompt "2d art of a sitting african rich woman, full hd, cinematic photo" \ --image input_image_hed1.jpg \ --control_type hed \ --repo_id XLabs-AI/flux-controlnet-collections --name flux-hed-controlnet.safetensors --device cuda --use_controlnet \ --model_type flux-dev --width 768 --height 768 \ --timestep_to_start_cfg 1 --num_steps 25 --true_gs 3.5 --guidance 4 ``` ![Example Picture 2](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/hed_example_1.png?raw=true) ```bash python3 main.py \ --prompt "anime ghibli style art of a running happy white dog, full hd" \ --image input_image_hed2.jpg \ --control_type hed \ --repo_id XLabs-AI/flux-controlnet-collections --name flux-hed-controlnet.safetensors --device cuda --use_controlnet \ --model_type flux-dev --width 768 --height 768 \ --timestep_to_start_cfg 1 --num_skkkteps 25 --true_gs 3.5 --guidance 4 ``` ![Example Picture 2](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/hed_example_2.png?raw=true) ## License Our weights fall under the [FLUX.1 [dev]](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) Non-Commercial License