WishArdently commited on
Commit
fd3be3e
·
verified ·
1 Parent(s): c0b215e

Upload InternVideo2Stage2VideoEncoder

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +169 -0
  3. config.py +220 -0
  4. model.py +41 -0
  5. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InternVideo2Stage2VideoEncoder"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "config.InternVideo2Config",
7
+ "AutoModel": "model.InternVideo2Stage2VideoEncoder"
8
+ },
9
+ "auto_resume": false,
10
+ "batch_size": 64,
11
+ "batch_size_test": 4,
12
+ "best_key": [
13
+ "msrvtt_1k_test_match",
14
+ "t2v_r1"
15
+ ],
16
+ "compile_model": false,
17
+ "criterion": {
18
+ "clip_loss_ratio": [
19
+ 1.0,
20
+ 1.0
21
+ ],
22
+ "distill_final_features": true,
23
+ "loss_weight": {
24
+ "mlm": 1.0,
25
+ "mvm": 0.0,
26
+ "uta": 0.0,
27
+ "vtc": 1.0,
28
+ "vtm": 1.0
29
+ },
30
+ "mlm_masking_prob": 0.5,
31
+ "vtm_hard_neg": true
32
+ },
33
+ "debug": false,
34
+ "deep_fusion": false,
35
+ "deepspeed": {
36
+ "enable": true,
37
+ "stage": 1
38
+ },
39
+ "delete_ds_optim_states": true,
40
+ "device": "cuda",
41
+ "dist_url": "env://",
42
+ "evaluate": false,
43
+ "evaluation": {
44
+ "eval_frame_ensemble": "concat",
45
+ "eval_offload": true,
46
+ "eval_x_only": false,
47
+ "k_test": 128
48
+ },
49
+ "gradient_checkpointing": true,
50
+ "inputs": {
51
+ "batch_size": {
52
+ "image": 64,
53
+ "video": 64
54
+ },
55
+ "batch_size_test": {
56
+ "image": 4,
57
+ "video": 4
58
+ },
59
+ "image_res": 224,
60
+ "max_txt_l": {
61
+ "image": 32,
62
+ "video": 32
63
+ },
64
+ "video_input": {
65
+ "num_frames": 8,
66
+ "num_frames_test": 8,
67
+ "random_aug": false,
68
+ "sample_type": "rand",
69
+ "sample_type_test": "middle"
70
+ }
71
+ },
72
+ "jump_evaluate": false,
73
+ "log_freq": 100,
74
+ "max_txt_l": 32,
75
+ "mode": "pt",
76
+ "model": {
77
+ "embed_dim": 512,
78
+ "find_unused_parameters": false,
79
+ "model_cls": "InternVideo2_Stage2",
80
+ "multimodal": {
81
+ "enable": true
82
+ },
83
+ "temp": 0.07,
84
+ "text_encoder": "bert_large",
85
+ "vision_encoder": {
86
+ "checkpoint_num": 40,
87
+ "clip_embed_dim": 768,
88
+ "clip_input_resolution": 224,
89
+ "clip_norm_type": "l2",
90
+ "clip_return_layer": 6,
91
+ "clip_student_return_interval": 1,
92
+ "clip_teacher": null,
93
+ "clip_teacher_embed_dim": 3200,
94
+ "clip_teacher_final_dim": 768,
95
+ "clip_teacher_return_interval": 1,
96
+ "d_model": 1408,
97
+ "image_mask_ratio": 0.5,
98
+ "image_mask_type": "random",
99
+ "img_size": 224,
100
+ "keep_temporal": false,
101
+ "name": "pretrain_internvideo2_1b_patch14_224",
102
+ "num_frames": 8,
103
+ "only_mask": true,
104
+ "patch_size": 14,
105
+ "pretrained": "/home/linanxi/InternVideo/checkpoints/InternVideo2-stage2_1b-224p-f4/InternVideo2-stage2_1b-224p-f4.pt",
106
+ "sep_image_video_pos_embed": true,
107
+ "tubelet_size": 1,
108
+ "use_checkpoint": false,
109
+ "use_flash_attn": true,
110
+ "use_fused_mlp": true,
111
+ "use_fused_rmsnorm": true,
112
+ "video_mask_ratio": 0.8,
113
+ "video_mask_type": "random"
114
+ }
115
+ },
116
+ "model_type": "internvideo2",
117
+ "num_frames": 8,
118
+ "num_frames_test": 8,
119
+ "num_workers": 6,
120
+ "optimizer": {
121
+ "different_lr": {
122
+ "enable": false,
123
+ "lr": 0.001,
124
+ "module_names": []
125
+ },
126
+ "lr": 5e-05,
127
+ "max_grad_norm": 3.0,
128
+ "opt": "adamW",
129
+ "opt_betas": [
130
+ 0.9,
131
+ 0.98
132
+ ],
133
+ "weight_decay": 0.05
134
+ },
135
+ "output_dir": null,
136
+ "pretrained_path": "",
137
+ "resume": false,
138
+ "save_ckpt_iter": null,
139
+ "save_latest": true,
140
+ "scheduler": {
141
+ "epochs": 10,
142
+ "min_lr_multi": 0.01,
143
+ "sched": "cosine",
144
+ "warmup_epochs": 1
145
+ },
146
+ "seed": 42,
147
+ "test_file": {
148
+ "didemo_ret_test": "available_corpus[\"didemo_ret_test\"]",
149
+ "msrvtt_1k_test": "available_corpus[\"msrvtt_1k_test\"]"
150
+ },
151
+ "test_types": [
152
+ "msrvtt_1k_test",
153
+ "didemo_ret_test"
154
+ ],
155
+ "text_enc": "bert_large",
156
+ "tokenizer": null,
157
+ "torch_dtype": "float16",
158
+ "train_file": "available_corpus[\"pretrain_example_data_1B\"]",
159
+ "transformers_version": "4.47.0",
160
+ "use_bf16": true,
161
+ "use_flash_sdp": false,
162
+ "use_half_precision": true,
163
+ "use_mem_efficient_sdp": false,
164
+ "wandb": {
165
+ "enable": false,
166
+ "entity": "opengvlab",
167
+ "project": "InternVideo2-Stage2"
168
+ }
169
+ }
config.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig, PreTrainedModel, AutoModel, AutoConfig
2
+
3
+ class DotDict(dict):
4
+ """字典类,支持通过属性访问键值对。"""
5
+
6
+ def __getattr__(self, key):
7
+ if key in self:
8
+ return self[key]
9
+ else:
10
+ raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{key}'")
11
+
12
+ def __setattr__(self, key, value):
13
+ self[key] = value
14
+
15
+ def __delattr__(self, key):
16
+ if key in self:
17
+ del self[key]
18
+ else:
19
+ raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{key}'")
20
+
21
+
22
+ class InternVideo2Config(PretrainedConfig):
23
+ model_type = "internvideo2"
24
+
25
+ def __init__(self,
26
+ tokenizer=None,
27
+ train_file=None,
28
+ test_file=None,
29
+ test_types=None,
30
+ num_workers=6,
31
+ best_key=None,
32
+ num_frames=8,
33
+ num_frames_test=8,
34
+ batch_size=64,
35
+ batch_size_test=4,
36
+ max_txt_l=32,
37
+ inputs=None,
38
+ text_enc="bert_large",
39
+ model=None,
40
+ criterion=None,
41
+ optimizer=None,
42
+ scheduler=None,
43
+ evaluate=False,
44
+ deep_fusion=False,
45
+ evaluation=None,
46
+ use_half_precision=True,
47
+ use_bf16=True,
48
+ gradient_checkpointing=True,
49
+ use_flash_sdp=False,
50
+ use_mem_efficient_sdp=False,
51
+ compile_model=False,
52
+ wandb=None,
53
+ dist_url="env://",
54
+ device="cuda",
55
+ mode="pt",
56
+ output_dir=None,
57
+ resume=False,
58
+ debug=False,
59
+ log_freq=100,
60
+ seed=42,
61
+ save_latest=True,
62
+ auto_resume=False,
63
+ jump_evaluate=False,
64
+ pretrained_path="",
65
+ save_ckpt_iter=None,
66
+ delete_ds_optim_states=True,
67
+ deepspeed=None,
68
+ **kwargs):
69
+ super().__init__(**kwargs)
70
+
71
+ self.tokenizer = tokenizer
72
+
73
+ # Data configuration
74
+ self.train_file = train_file or "available_corpus[\"pretrain_example_data_1B\"]"
75
+ self.test_file = DotDict(test_file or {
76
+ "msrvtt_1k_test": "available_corpus[\"msrvtt_1k_test\"]",
77
+ "didemo_ret_test": "available_corpus[\"didemo_ret_test\"]"
78
+ })
79
+ self.test_types = test_types or ["msrvtt_1k_test", "didemo_ret_test"]
80
+ self.num_workers = num_workers
81
+ self.best_key = best_key or ["msrvtt_1k_test_match", "t2v_r1"]
82
+
83
+ # Input configuration
84
+ self.num_frames = num_frames
85
+ self.num_frames_test = num_frames_test
86
+ self.batch_size = batch_size
87
+ self.batch_size_test = batch_size_test
88
+ self.max_txt_l = max_txt_l
89
+ self.inputs = DotDict(inputs or {
90
+ "image_res": 224,
91
+ "video_input": DotDict({
92
+ "num_frames": num_frames,
93
+ "sample_type": "rand",
94
+ "num_frames_test": num_frames_test,
95
+ "sample_type_test": "middle",
96
+ "random_aug": False
97
+ }),
98
+ "max_txt_l": DotDict({"image": max_txt_l, "video": max_txt_l}),
99
+ "batch_size": DotDict({"image": batch_size, "video": batch_size}),
100
+ "batch_size_test": DotDict({"image": batch_size_test, "video": batch_size_test})
101
+ })
102
+
103
+ # Model configuration
104
+ self.text_enc = text_enc
105
+ self.model = DotDict(model or {
106
+ "model_cls": "InternVideo2_Stage2",
107
+ "vision_encoder": DotDict({
108
+ "name": "pretrain_internvideo2_1b_patch14_224",
109
+ "img_size": 224,
110
+ "num_frames": num_frames,
111
+ "tubelet_size": 1,
112
+ "patch_size": 14,
113
+ "d_model": 1408,
114
+ "clip_embed_dim": 768,
115
+ "clip_teacher_embed_dim": 3200,
116
+ "clip_teacher_final_dim": 768,
117
+ "clip_norm_type": "l2",
118
+ "clip_return_layer": 6,
119
+ "clip_student_return_interval": 1,
120
+ "pretrained": "/home/linanxi/InternVideo/checkpoints/InternVideo2-stage2_1b-224p-f4/InternVideo2-stage2_1b-224p-f4.pt",
121
+ "use_checkpoint": False,
122
+ "checkpoint_num": 40,
123
+ "use_flash_attn": True,
124
+ "use_fused_rmsnorm": True,
125
+ "use_fused_mlp": True,
126
+ "clip_teacher": None,
127
+ "clip_input_resolution": 224,
128
+ "clip_teacher_return_interval": 1,
129
+ "video_mask_type": "random",
130
+ "video_mask_ratio": 0.8,
131
+ "image_mask_type": "random",
132
+ "image_mask_ratio": 0.5,
133
+ "sep_image_video_pos_embed": True,
134
+ "keep_temporal": False,
135
+ "only_mask": True
136
+ }),
137
+ "text_encoder": text_enc,
138
+ "multimodal": DotDict({"enable": True}),
139
+ "embed_dim": 512,
140
+ "temp": 0.07,
141
+ "find_unused_parameters": False
142
+ })
143
+
144
+ # Criterion configuration
145
+ self.criterion = DotDict(criterion or {
146
+ "loss_weight": DotDict({
147
+ "vtc": 1.0,
148
+ "mlm": 1.0,
149
+ "vtm": 1.0,
150
+ "mvm": 0.0,
151
+ "uta": 0.0
152
+ }),
153
+ "vtm_hard_neg": True,
154
+ "mlm_masking_prob": 0.5,
155
+ "distill_final_features": True,
156
+ "clip_loss_ratio": [1.0, 1.0]
157
+ })
158
+
159
+ # Optimizer configuration
160
+ self.optimizer = DotDict(optimizer or {
161
+ "opt": "adamW",
162
+ "lr": 5e-5,
163
+ "opt_betas": [0.9, 0.98],
164
+ "weight_decay": 0.05,
165
+ "max_grad_norm": 3.0,
166
+ "different_lr": DotDict({"enable": False, "module_names": [], "lr": 1e-3})
167
+ })
168
+
169
+ # Scheduler configuration
170
+ self.scheduler = DotDict(scheduler or {
171
+ "sched": "cosine",
172
+ "epochs": 10,
173
+ "min_lr_multi": 0.01,
174
+ "warmup_epochs": 1
175
+ })
176
+
177
+ # Evaluation configuration
178
+ self.evaluate = evaluate
179
+ self.deep_fusion = deep_fusion
180
+ self.evaluation = DotDict(evaluation or {
181
+ "eval_frame_ensemble": "concat",
182
+ "eval_x_only": False,
183
+ "k_test": 128,
184
+ "eval_offload": True
185
+ })
186
+
187
+ # Miscellaneous
188
+ self.use_half_precision = use_half_precision
189
+ self.use_bf16 = use_bf16
190
+ self.gradient_checkpointing = gradient_checkpointing
191
+ self.use_flash_sdp = use_flash_sdp
192
+ self.use_mem_efficient_sdp = use_mem_efficient_sdp
193
+ self.compile_model = compile_model
194
+
195
+ self.wandb = DotDict(wandb or {
196
+ "enable": False,
197
+ "entity": "opengvlab",
198
+ "project": "InternVideo2-Stage2"
199
+ })
200
+
201
+ self.dist_url = dist_url
202
+ self.device = device
203
+ self.mode = mode
204
+ self.output_dir = output_dir
205
+ self.resume = resume
206
+ self.debug = debug
207
+ self.log_freq = log_freq
208
+ self.seed = seed
209
+
210
+ self.save_latest = save_latest
211
+ self.auto_resume = auto_resume
212
+ self.jump_evaluate = jump_evaluate
213
+ self.pretrained_path = pretrained_path
214
+ self.save_ckpt_iter = save_ckpt_iter
215
+ self.delete_ds_optim_states = delete_ds_optim_states
216
+
217
+ self.deepspeed = DotDict(deepspeed or {
218
+ "enable": True,
219
+ "stage": 1
220
+ })
model.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from internvideo2_stage2 import InternVideo2_Stage2 as IV2S2
2
+ from transformers import PretrainedConfig, PreTrainedModel, AutoModel, AutoConfig
3
+ from config import InternVideo2Config as config
4
+ import warnings
5
+ import torch
6
+ warnings.filterwarnings("ignore")
7
+
8
+ # model_config = config()
9
+ # model = IV2S2(model_config)
10
+ # print(model)
11
+
12
+ class InternVideo2Stage2VideoEncoder(PreTrainedModel):
13
+ config_class = config
14
+
15
+ def __init__(self, config):
16
+ super().__init__(config)
17
+ self.config = config
18
+ self.model = IV2S2(config).half().to(config.device)
19
+
20
+ def forward(self, x: torch.tensor):
21
+ """forward pass
22
+ Args:
23
+ x (torch.tensor): Shape (B, N, C, H, W) or (N, C, H, W)
24
+ Returns:
25
+ torch.tensor: Shape (B*N, hidden_size)
26
+ """
27
+ # x: Shape(B, C, N, H, W)
28
+ # output: Shape(B, N*98, hidden_size)
29
+ if len(x.shape) == 4:
30
+ x = x.unsqueeze(0)
31
+ B, N, C, H, W = x.shape
32
+ x = x.permute(0, 2, 1, 3, 4) # Shape(B, C, N, H, W)
33
+ output = self.model.encode_vision(x)
34
+ pooled_vision_embeds = output[1]
35
+ return pooled_vision_embeds
36
+
37
+ if __name__ == "__main__":
38
+ model_config = config()
39
+ model = InternVideo2Stage2VideoEncoder(model_config)
40
+ x = torch.randn(2, 3, 8, 224, 224, dtype=torch.float16).to(model_config.device)
41
+ output = model(x)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5aa6e5518080f7c11b1a55221c8fd72ee0d9dff5ba50c11794b32cf3c6df1c71
3
+ size 2104856154