## Usage ```python from transformers import AutoModel, AutoTokenizer import torch from torch import nn class Classifier(nn.Module): def __init__(self): super(Classifier, self).__init__() self.fc1 = nn.Linear(1024, 4096) self.fc2 = nn.Linear(4096, 512) self.fc3 = nn.Linear(512, 2) self.dropout = nn.Dropout(p=0.1) self.leaky_relu = nn.LeakyReLU(negative_slope=0.01) def forward(self, x): x = self.leaky_relu(self.fc1(x)) x = self.dropout(x) x = self.leaky_relu(self.fc2(x)) x = self.dropout(x) x = self.fc3(x) return x class CombinedModel(nn.Module): def __init__(self, transformer_model_name, classifier_checkpoint_path): super(CombinedModel, self).__init__() self.transformer = AutoModel.from_pretrained(transformer_model_name) self.tokenizer = AutoTokenizer.from_pretrained(transformer_model_name) self.classifier = Classifier() classifier_checkpoint = torch.load(classifier_checkpoint_path, map_location=torch.device('mps')) # could set cpu, cuda self.classifier.load_state_dict(classifier_checkpoint) def forward(self, text): outputs = self.tokenizer(text, return_tensors='pt', truncation=True, padding=True) transformer_outputs = self.transformer(**outputs) pooled_output = transformer_outputs.pooler_output logits = self.classifier(pooled_output) return logits model = CombinedModel('intfloat/multilingual-e5-large', 'path/to/best_model.pt') model.eval() def get_label(query, doc): text = f"Запрос: {query} /Документ: {doc}" logits = model(text) return torch.softmax(logits, dim=1).detach().numpy() ```